Spaces:
Runtime error
Runtime error
File size: 6,497 Bytes
5019931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
from typing import List, NoReturn
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def init_embedding(layer: nn.Module) -> NoReturn:
r"""Initialize a Linear or Convolutional layer."""
nn.init.uniform_(layer.weight, -1.0, 1.0)
if hasattr(layer, 'bias'):
if layer.bias is not None:
layer.bias.data.fill_(0.0)
def init_layer(layer: nn.Module) -> NoReturn:
r"""Initialize a Linear or Convolutional layer."""
nn.init.xavier_uniform_(layer.weight)
if hasattr(layer, "bias"):
if layer.bias is not None:
layer.bias.data.fill_(0.0)
def init_bn(bn: nn.Module) -> NoReturn:
r"""Initialize a Batchnorm layer."""
bn.bias.data.fill_(0.0)
bn.weight.data.fill_(1.0)
bn.running_mean.data.fill_(0.0)
bn.running_var.data.fill_(1.0)
def act(x: torch.Tensor, activation: str) -> torch.Tensor:
if activation == "relu":
return F.relu_(x)
elif activation == "leaky_relu":
return F.leaky_relu_(x, negative_slope=0.01)
elif activation == "swish":
return x * torch.sigmoid(x)
else:
raise Exception("Incorrect activation!")
class Base:
def __init__(self):
r"""Base function for extracting spectrogram, cos, and sin, etc."""
pass
def spectrogram(self, input: torch.Tensor, eps: float = 0.0) -> torch.Tensor:
r"""Calculate spectrogram.
Args:
input: (batch_size, segments_num)
eps: float
Returns:
spectrogram: (batch_size, time_steps, freq_bins)
"""
(real, imag) = self.stft(input)
return torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5
def spectrogram_phase(
self, input: torch.Tensor, eps: float = 0.0
) -> List[torch.Tensor]:
r"""Calculate the magnitude, cos, and sin of the STFT of input.
Args:
input: (batch_size, segments_num)
eps: float
Returns:
mag: (batch_size, time_steps, freq_bins)
cos: (batch_size, time_steps, freq_bins)
sin: (batch_size, time_steps, freq_bins)
"""
(real, imag) = self.stft(input)
mag = torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5
cos = real / mag
sin = imag / mag
return mag, cos, sin
def wav_to_spectrogram_phase(
self, input: torch.Tensor, eps: float = 1e-10
) -> List[torch.Tensor]:
r"""Convert waveforms to magnitude, cos, and sin of STFT.
Args:
input: (batch_size, channels_num, segment_samples)
eps: float
Outputs:
mag: (batch_size, channels_num, time_steps, freq_bins)
cos: (batch_size, channels_num, time_steps, freq_bins)
sin: (batch_size, channels_num, time_steps, freq_bins)
"""
batch_size, channels_num, segment_samples = input.shape
# Reshape input with shapes of (n, segments_num) to meet the
# requirements of the stft function.
x = input.reshape(batch_size * channels_num, segment_samples)
mag, cos, sin = self.spectrogram_phase(x, eps=eps)
# mag, cos, sin: (batch_size * channels_num, 1, time_steps, freq_bins)
_, _, time_steps, freq_bins = mag.shape
mag = mag.reshape(batch_size, channels_num, time_steps, freq_bins)
cos = cos.reshape(batch_size, channels_num, time_steps, freq_bins)
sin = sin.reshape(batch_size, channels_num, time_steps, freq_bins)
return mag, cos, sin
def wav_to_spectrogram(
self, input: torch.Tensor, eps: float = 1e-10
) -> List[torch.Tensor]:
mag, cos, sin = self.wav_to_spectrogram_phase(input, eps)
return mag
class Subband:
def __init__(self, subbands_num: int):
r"""Warning!! This class is not used!!
This class does not work as good as [1] which split subbands in the
time-domain. Please refere to [1] for formal implementation.
[1] Liu, Haohe, et al. "Channel-wise subband input for better voice and
accompaniment separation on high resolution music." arXiv preprint arXiv:2008.05216 (2020).
Args:
subbands_num: int, e.g., 4
"""
self.subbands_num = subbands_num
def analysis(self, x: torch.Tensor) -> torch.Tensor:
r"""Analysis time-frequency representation into subbands. Stack the
subbands along the channel axis.
Args:
x: (batch_size, channels_num, time_steps, freq_bins)
Returns:
output: (batch_size, channels_num * subbands_num, time_steps, freq_bins // subbands_num)
"""
batch_size, channels_num, time_steps, freq_bins = x.shape
x = x.reshape(
batch_size,
channels_num,
time_steps,
self.subbands_num,
freq_bins // self.subbands_num,
)
# x: (batch_size, channels_num, time_steps, subbands_num, freq_bins // subbands_num)
x = x.transpose(2, 3)
output = x.reshape(
batch_size,
channels_num * self.subbands_num,
time_steps,
freq_bins // self.subbands_num,
)
# output: (batch_size, channels_num * subbands_num, time_steps, freq_bins // subbands_num)
return output
def synthesis(self, x: torch.Tensor) -> torch.Tensor:
r"""Synthesis subband time-frequency representations into original
time-frequency representation.
Args:
x: (batch_size, channels_num * subbands_num, time_steps, freq_bins // subbands_num)
Returns:
output: (batch_size, channels_num, time_steps, freq_bins)
"""
batch_size, subband_channels_num, time_steps, subband_freq_bins = x.shape
channels_num = subband_channels_num // self.subbands_num
freq_bins = subband_freq_bins * self.subbands_num
x = x.reshape(
batch_size,
channels_num,
self.subbands_num,
time_steps,
subband_freq_bins,
)
# x: (batch_size, channels_num, subbands_num, time_steps, freq_bins // subbands_num)
x = x.transpose(2, 3)
# x: (batch_size, channels_num, time_steps, subbands_num, freq_bins // subbands_num)
output = x.reshape(batch_size, channels_num, time_steps, freq_bins)
# x: (batch_size, channels_num, time_steps, freq_bins)
return output
|