Spaces:
Runtime error
Runtime error
File size: 11,900 Bytes
16925ec 5019931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import sys
sys.path.append('.')
import argparse
import os
import time
from typing import Dict
import pathlib
import librosa
import numpy as np
import soundfile
import torch
import torch.nn as nn
from bytesep.models.lightning_modules import get_model_class
from bytesep.utils import read_yaml
class Separator:
def __init__(
self, model: nn.Module, segment_samples: int, batch_size: int, device: str
):
r"""Separate to separate an audio clip into a target source.
Args:
model: nn.Module, trained model
segment_samples: int, length of segments to be input to a model, e.g., 44100*30
batch_size, int, e.g., 12
device: str, e.g., 'cuda'
"""
self.model = model
self.segment_samples = segment_samples
self.batch_size = batch_size
self.device = device
def separate(self, input_dict: Dict) -> np.array:
r"""Separate an audio clip into a target source.
Args:
input_dict: dict, e.g., {
waveform: (channels_num, audio_samples),
...,
}
Returns:
sep_audio: (channels_num, audio_samples) | (target_sources_num, channels_num, audio_samples)
"""
audio = input_dict['waveform']
audio_samples = audio.shape[-1]
# Pad the audio with zero in the end so that the length of audio can be
# evenly divided by segment_samples.
audio = self.pad_audio(audio)
# Enframe long audio into segments.
segments = self.enframe(audio, self.segment_samples)
# (segments_num, channels_num, segment_samples)
segments_input_dict = {'waveform': segments}
if 'condition' in input_dict.keys():
segments_num = len(segments)
segments_input_dict['condition'] = np.tile(
input_dict['condition'][None, :], (segments_num, 1)
)
# (batch_size, segments_num)
# Separate in mini-batches.
sep_segments = self._forward_in_mini_batches(
self.model, segments_input_dict, self.batch_size
)['waveform']
# (segments_num, channels_num, segment_samples)
# Deframe segments into long audio.
sep_audio = self.deframe(sep_segments)
# (channels_num, padded_audio_samples)
sep_audio = sep_audio[:, 0:audio_samples]
# (channels_num, audio_samples)
return sep_audio
def pad_audio(self, audio: np.array) -> np.array:
r"""Pad the audio with zero in the end so that the length of audio can
be evenly divided by segment_samples.
Args:
audio: (channels_num, audio_samples)
Returns:
padded_audio: (channels_num, audio_samples)
"""
channels_num, audio_samples = audio.shape
# Number of segments
segments_num = int(np.ceil(audio_samples / self.segment_samples))
pad_samples = segments_num * self.segment_samples - audio_samples
padded_audio = np.concatenate(
(audio, np.zeros((channels_num, pad_samples))), axis=1
)
# (channels_num, padded_audio_samples)
return padded_audio
def enframe(self, audio: np.array, segment_samples: int) -> np.array:
r"""Enframe long audio into segments.
Args:
audio: (channels_num, audio_samples)
segment_samples: int
Returns:
segments: (segments_num, channels_num, segment_samples)
"""
audio_samples = audio.shape[1]
assert audio_samples % segment_samples == 0
hop_samples = segment_samples // 2
segments = []
pointer = 0
while pointer + segment_samples <= audio_samples:
segments.append(audio[:, pointer : pointer + segment_samples])
pointer += hop_samples
segments = np.array(segments)
return segments
def deframe(self, segments: np.array) -> np.array:
r"""Deframe segments into long audio.
Args:
segments: (segments_num, channels_num, segment_samples)
Returns:
output: (channels_num, audio_samples)
"""
(segments_num, _, segment_samples) = segments.shape
if segments_num == 1:
return segments[0]
assert self._is_integer(segment_samples * 0.25)
assert self._is_integer(segment_samples * 0.75)
output = []
output.append(segments[0, :, 0 : int(segment_samples * 0.75)])
for i in range(1, segments_num - 1):
output.append(
segments[
i, :, int(segment_samples * 0.25) : int(segment_samples * 0.75)
]
)
output.append(segments[-1, :, int(segment_samples * 0.25) :])
output = np.concatenate(output, axis=-1)
return output
def _is_integer(self, x: float) -> bool:
if x - int(x) < 1e-10:
return True
else:
return False
def _forward_in_mini_batches(
self, model: nn.Module, segments_input_dict: Dict, batch_size: int
) -> Dict:
r"""Forward data to model in mini-batch.
Args:
model: nn.Module
segments_input_dict: dict, e.g., {
'waveform': (segments_num, channels_num, segment_samples),
...,
}
batch_size: int
Returns:
output_dict: dict, e.g. {
'waveform': (segments_num, channels_num, segment_samples),
}
"""
output_dict = {}
pointer = 0
segments_num = len(segments_input_dict['waveform'])
while True:
if pointer >= segments_num:
break
batch_input_dict = {}
for key in segments_input_dict.keys():
batch_input_dict[key] = torch.Tensor(
segments_input_dict[key][pointer : pointer + batch_size]
).to(self.device)
pointer += batch_size
with torch.no_grad():
model.eval()
batch_output_dict = model(batch_input_dict)
for key in batch_output_dict.keys():
self._append_to_dict(
output_dict, key, batch_output_dict[key].data.cpu().numpy()
)
for key in output_dict.keys():
output_dict[key] = np.concatenate(output_dict[key], axis=0)
return output_dict
def _append_to_dict(self, dict, key, value):
if key in dict.keys():
dict[key].append(value)
else:
dict[key] = [value]
class SeparatorWrapper:
def __init__(
self, source_type='vocals', model=None, checkpoint_path=None, device='cuda'
):
input_channels = 2
target_sources_num = 1
model_type = "ResUNet143_Subbandtime"
segment_samples = 44100 * 10
batch_size = 1
self.checkpoint_path = self.download_checkpoints(checkpoint_path, source_type)
if device == 'cuda' and torch.cuda.is_available():
self.device = 'cuda'
else:
self.device = 'cpu'
# Get model class.
Model = get_model_class(model_type)
# Create model.
self.model = Model(
input_channels=input_channels, target_sources_num=target_sources_num
)
# Load checkpoint.
checkpoint = torch.load(self.checkpoint_path, map_location='cpu')
self.model.load_state_dict(checkpoint["model"])
# Move model to device.
self.model.to(self.device)
# Create separator.
self.separator = Separator(
model=self.model,
segment_samples=segment_samples,
batch_size=batch_size,
device=self.device,
)
def download_checkpoints(self, checkpoint_path, source_type):
if source_type == "vocals":
checkpoint_bare_name = "resunet143_subbtandtime_vocals_8.8dB_350k_steps"
elif source_type == "accompaniment":
checkpoint_bare_name = (
"resunet143_subbtandtime_accompaniment_16.4dB_350k_steps.pth"
)
else:
raise NotImplementedError
if not checkpoint_path:
checkpoint_path = '{}/bytesep_data/{}.pth'.format(
str(pathlib.Path.home()), checkpoint_bare_name
)
print('Checkpoint path: {}'.format(checkpoint_path))
if (
not os.path.exists(checkpoint_path)
or os.path.getsize(checkpoint_path) < 4e8
):
os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
zenodo_dir = "https://zenodo.org/record/5507029/files"
zenodo_path = os.path.join(
zenodo_dir, "{}?download=1".format(checkpoint_bare_name)
)
os.system('wget -O "{}" "{}"'.format(checkpoint_path, zenodo_path))
return checkpoint_path
def separate(self, audio):
input_dict = {'waveform': audio}
sep_wav = self.separator.separate(input_dict)
return sep_wav
def inference(args):
# Need to use torch.distributed if models contain inplace_abn.abn.InPlaceABNSync.
import torch.distributed as dist
dist.init_process_group(
'gloo', init_method='file:///tmp/somefile', rank=0, world_size=1
)
# Arguments & parameters
config_yaml = args.config_yaml
checkpoint_path = args.checkpoint_path
audio_path = args.audio_path
output_path = args.output_path
device = (
torch.device('cuda')
if args.cuda and torch.cuda.is_available()
else torch.device('cpu')
)
configs = read_yaml(config_yaml)
sample_rate = configs['train']['sample_rate']
input_channels = configs['train']['channels']
target_source_types = configs['train']['target_source_types']
target_sources_num = len(target_source_types)
model_type = configs['train']['model_type']
segment_samples = int(30 * sample_rate)
batch_size = 1
print("Using {} for separating ..".format(device))
# paths
if os.path.dirname(output_path) != "":
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Get model class.
Model = get_model_class(model_type)
# Create model.
model = Model(input_channels=input_channels, target_sources_num=target_sources_num)
# Load checkpoint.
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint["model"])
# Move model to device.
model.to(device)
# Create separator.
separator = Separator(
model=model,
segment_samples=segment_samples,
batch_size=batch_size,
device=device,
)
# Load audio.
audio, _ = librosa.load(audio_path, sr=sample_rate, mono=False)
# audio = audio[None, :]
input_dict = {'waveform': audio}
# Separate
separate_time = time.time()
sep_wav = separator.separate(input_dict)
# (channels_num, audio_samples)
print('Separate time: {:.3f} s'.format(time.time() - separate_time))
# Write out separated audio.
soundfile.write(file='_zz.wav', data=sep_wav.T, samplerate=sample_rate)
os.system("ffmpeg -y -loglevel panic -i _zz.wav {}".format(output_path))
print('Write out to {}'.format(output_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument("--config_yaml", type=str, required=True)
parser.add_argument("--checkpoint_path", type=str, required=True)
parser.add_argument("--audio_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
parser.add_argument("--cuda", action='store_true', default=True)
args = parser.parse_args()
inference(args)
|