Spaces:
Runtime error
Runtime error
File size: 7,786 Bytes
5019931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import pickle
from typing import Dict, List, NoReturn
import numpy as np
import torch.distributed as dist
class SegmentSampler:
def __init__(
self,
indexes_path: str,
segment_samples: int,
mixaudio_dict: Dict,
batch_size: int,
steps_per_epoch: int,
random_seed=1234,
):
r"""Sample training indexes of sources.
Args:
indexes_path: str, path of indexes dict
segment_samplers: int
mixaudio_dict, dict, including hyper-parameters for mix-audio data
augmentation, e.g., {'voclas': 2, 'accompaniment': 2}
batch_size: int
steps_per_epoch: int, #steps_per_epoch is called an `epoch`
random_seed: int
"""
self.segment_samples = segment_samples
self.mixaudio_dict = mixaudio_dict
self.batch_size = batch_size
self.steps_per_epoch = steps_per_epoch
self.meta_dict = pickle.load(open(indexes_path, "rb"))
# E.g., {
# 'vocals': [
# {'hdf5_path': 'songA.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 0, 'end_sample': 132300},
# {'hdf5_path': 'songB.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 4410, 'end_sample': 445410},
# ...
# ],
# 'accompaniment': [
# {'hdf5_path': 'songA.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 0, 'end_sample': 132300},
# {'hdf5_path': 'songB.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 4410, 'end_sample': 445410},
# ...
# ]
# }
self.source_types = self.meta_dict.keys()
# E.g., ['vocals', 'accompaniment']
self.pointers_dict = {source_type: 0 for source_type in self.source_types}
# E.g., {'vocals': 0, 'accompaniment': 0}
self.indexes_dict = {
source_type: np.arange(len(self.meta_dict[source_type]))
for source_type in self.source_types
}
# E.g. {
# 'vocals': [0, 1, ..., 225751],
# 'accompaniment': [0, 1, ..., 225751]
# }
self.random_state = np.random.RandomState(random_seed)
# Shuffle indexes.
for source_type in self.source_types:
self.random_state.shuffle(self.indexes_dict[source_type])
print("{}: {}".format(source_type, len(self.indexes_dict[source_type])))
def __iter__(self) -> List[Dict]:
r"""Yield a batch of meta info.
Returns:
batch_meta_list: (batch_size,) e.g., when mix-audio is 2, looks like [
{'vocals': [
{'hdf5_path': 'songA.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 13406400, 'end_sample': 13538700},
{'hdf5_path': 'songB.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 4440870, 'end_sample': 4573170}]
'accompaniment': [
{'hdf5_path': 'songE.h5', 'key_in_hdf5': 'accompaniment', 'begin_sample': 14579460, 'end_sample': 14711760},
{'hdf5_path': 'songF.h5', 'key_in_hdf5': 'accompaniment', 'begin_sample': 3995460, 'end_sample': 4127760}]
}
...
]
"""
batch_size = self.batch_size
while True:
batch_meta_dict = {source_type: [] for source_type in self.source_types}
for source_type in self.source_types:
# E.g., ['vocals', 'accompaniment']
# Loop until get a mini-batch.
while len(batch_meta_dict[source_type]) != batch_size:
largest_index = (
len(self.indexes_dict[source_type])
- self.mixaudio_dict[source_type]
)
# E.g., 225750 = 225752 - 2
if self.pointers_dict[source_type] > largest_index:
# Reset pointer, and shuffle indexes.
self.pointers_dict[source_type] = 0
self.random_state.shuffle(self.indexes_dict[source_type])
source_metas = []
mix_audios_num = self.mixaudio_dict[source_type]
for _ in range(mix_audios_num):
pointer = self.pointers_dict[source_type]
# E.g., 1
index = self.indexes_dict[source_type][pointer]
# E.g., 12231
self.pointers_dict[source_type] += 1
source_meta = self.meta_dict[source_type][index]
# E.g., ['song_A.h5', 198450, 330750]
# source_metas.append(new_source_meta)
source_metas.append(source_meta)
batch_meta_dict[source_type].append(source_metas)
# When mix-audio is 2, batch_meta_dict looks like: {
# 'vocals': [
# [{'hdf5_path': 'songA.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 13406400, 'end_sample': 13538700},
# {'hdf5_path': 'songB.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 4440870, 'end_sample': 4573170}],
# [{'hdf5_path': 'songC.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 1186290, 'end_sample': 1318590},
# {'hdf5_path': 'songD.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 8462790, 'end_sample': 8595090}]
# ]
# 'accompaniment': [
# [{'hdf5_path': 'songE.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 24232950, 'end_sample': 24365250},
# {'hdf5_path': 'songF.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 1569960, 'end_sample': 1702260}],
# [{'hdf5_path': 'songG.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 2795940, 'end_sample': 2928240},
# {'hdf5_path': 'songH.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 10923570, 'end_sample': 11055870}]
# ]
# }
batch_meta_list = [
{
source_type: batch_meta_dict[source_type][i]
for source_type in self.source_types
}
for i in range(batch_size)
]
# When mix-audio is 2, batch_meta_list looks like: [
# {'vocals': [
# {'hdf5_path': 'songA.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 13406400, 'end_sample': 13538700},
# {'hdf5_path': 'songB.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 4440870, 'end_sample': 4573170}]
# 'accompaniment': [
# {'hdf5_path': 'songE.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 14579460, 'end_sample': 14711760},
# {'hdf5_path': 'songF.h5', 'key_in_hdf5': 'vocals', 'begin_sample': 3995460, 'end_sample': 4127760}]
# }
# ...
# ]
yield batch_meta_list
def __len__(self) -> int:
return self.steps_per_epoch
def state_dict(self) -> Dict:
state = {'pointers_dict': self.pointers_dict, 'indexes_dict': self.indexes_dict}
return state
def load_state_dict(self, state) -> NoReturn:
self.pointers_dict = state['pointers_dict']
self.indexes_dict = state['indexes_dict']
class DistributedSamplerWrapper:
def __init__(self, sampler):
r"""Distributed wrapper of sampler."""
self.sampler = sampler
def __iter__(self):
num_replicas = dist.get_world_size()
rank = dist.get_rank()
for indices in self.sampler:
yield indices[rank::num_replicas]
def __len__(self) -> int:
return len(self.sampler)
|