File size: 10,443 Bytes
16aee22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
MaskFormer Training Script.

This script is a simplified version of the training script in detectron2/tools.
"""
try:
    # ignore ShapelyDeprecationWarning from fvcore
    from shapely.errors import ShapelyDeprecationWarning
    import warnings
    warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
    pass

import copy
import itertools
import logging
import os

from collections import OrderedDict
from typing import Any, Dict, List, Set

import torch

import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.engine import (
    DefaultTrainer,
    default_argument_parser,
    default_setup,
    launch,
)
from detectron2.evaluation import (
    DatasetEvaluator,
    inference_on_dataset,
    print_csv_format,
    verify_results,
)
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger

# MaskFormer
from mask2former import add_maskformer2_config
from mask2former_video import (
    YTVISDatasetMapper,
    YTVISEvaluator,
    add_maskformer2_video_config,
    build_detection_train_loader,
    build_detection_test_loader,
    get_detection_dataset_dicts,
)


class Trainer(DefaultTrainer):
    """
    Extension of the Trainer class adapted to MaskFormer.
    """

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each builtin dataset.
        For your own dataset, you can simply create an evaluator manually in your
        script and do not have to worry about the hacky if-else logic here.
        """
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
            os.makedirs(output_folder, exist_ok=True)

        return YTVISEvaluator(dataset_name, cfg, True, output_folder)

    @classmethod
    def build_train_loader(cls, cfg):
        dataset_name = cfg.DATASETS.TRAIN[0]
        mapper = YTVISDatasetMapper(cfg, is_train=True)

        dataset_dict = get_detection_dataset_dicts(
            dataset_name,
            filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
            proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
        )

        return build_detection_train_loader(cfg, mapper=mapper, dataset=dataset_dict)

    @classmethod
    def build_test_loader(cls, cfg, dataset_name):
        dataset_name = cfg.DATASETS.TEST[0]
        mapper = YTVISDatasetMapper(cfg, is_train=False)
        return build_detection_test_loader(cfg, dataset_name, mapper=mapper)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`detectron2.solver.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        return build_lr_scheduler(cfg, optimizer)

    @classmethod
    def build_optimizer(cls, cfg, model):
        weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
        weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED

        defaults = {}
        defaults["lr"] = cfg.SOLVER.BASE_LR
        defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY

        norm_module_types = (
            torch.nn.BatchNorm1d,
            torch.nn.BatchNorm2d,
            torch.nn.BatchNorm3d,
            torch.nn.SyncBatchNorm,
            # NaiveSyncBatchNorm inherits from BatchNorm2d
            torch.nn.GroupNorm,
            torch.nn.InstanceNorm1d,
            torch.nn.InstanceNorm2d,
            torch.nn.InstanceNorm3d,
            torch.nn.LayerNorm,
            torch.nn.LocalResponseNorm,
        )

        params: List[Dict[str, Any]] = []
        memo: Set[torch.nn.parameter.Parameter] = set()
        for module_name, module in model.named_modules():
            for module_param_name, value in module.named_parameters(recurse=False):
                if not value.requires_grad:
                    continue
                # Avoid duplicating parameters
                if value in memo:
                    continue
                memo.add(value)

                hyperparams = copy.copy(defaults)
                if "backbone" in module_name:
                    hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
                if (
                    "relative_position_bias_table" in module_param_name
                    or "absolute_pos_embed" in module_param_name
                ):
                    print(module_param_name)
                    hyperparams["weight_decay"] = 0.0
                if isinstance(module, norm_module_types):
                    hyperparams["weight_decay"] = weight_decay_norm
                if isinstance(module, torch.nn.Embedding):
                    hyperparams["weight_decay"] = weight_decay_embed
                params.append({"params": [value], **hyperparams})

        def maybe_add_full_model_gradient_clipping(optim):
            # detectron2 doesn't have full model gradient clipping now
            clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
            enable = (
                cfg.SOLVER.CLIP_GRADIENTS.ENABLED
                and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
                and clip_norm_val > 0.0
            )

            class FullModelGradientClippingOptimizer(optim):
                def step(self, closure=None):
                    all_params = itertools.chain(*[x["params"] for x in self.param_groups])
                    torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
                    super().step(closure=closure)

            return FullModelGradientClippingOptimizer if enable else optim

        optimizer_type = cfg.SOLVER.OPTIMIZER
        if optimizer_type == "SGD":
            optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
                params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
            )
        elif optimizer_type == "ADAMW":
            optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
                params, cfg.SOLVER.BASE_LR
            )
        else:
            raise NotImplementedError(f"no optimizer type {optimizer_type}")
        if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
            optimizer = maybe_add_gradient_clipping(cfg, optimizer)
        return optimizer

    @classmethod
    def test(cls, cfg, model, evaluators=None):
        """
        Evaluate the given model. The given model is expected to already contain
        weights to evaluate.
        Args:
            cfg (CfgNode):
            model (nn.Module):
            evaluators (list[DatasetEvaluator] or None): if None, will call
                :meth:`build_evaluator`. Otherwise, must have the same length as
                ``cfg.DATASETS.TEST``.
        Returns:
            dict: a dict of result metrics
        """
        from torch.cuda.amp import autocast
        logger = logging.getLogger(__name__)
        if isinstance(evaluators, DatasetEvaluator):
            evaluators = [evaluators]
        if evaluators is not None:
            assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format(
                len(cfg.DATASETS.TEST), len(evaluators)
            )

        results = OrderedDict()
        for idx, dataset_name in enumerate(cfg.DATASETS.TEST):
            data_loader = cls.build_test_loader(cfg, dataset_name)
            # When evaluators are passed in as arguments,
            # implicitly assume that evaluators can be created before data_loader.
            if evaluators is not None:
                evaluator = evaluators[idx]
            else:
                try:
                    evaluator = cls.build_evaluator(cfg, dataset_name)
                except NotImplementedError:
                    logger.warn(
                        "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, "
                        "or implement its `build_evaluator` method."
                    )
                    results[dataset_name] = {}
                    continue
            with autocast():
                results_i = inference_on_dataset(model, data_loader, evaluator)
            results[dataset_name] = results_i
            if comm.is_main_process():
                assert isinstance(
                    results_i, dict
                ), "Evaluator must return a dict on the main process. Got {} instead.".format(
                    results_i
                )
                logger.info("Evaluation results for {} in csv format:".format(dataset_name))
                print_csv_format(results_i)

        if len(results) == 1:
            results = list(results.values())[0]
        return results


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    # for poly lr schedule
    add_deeplab_config(cfg)
    add_maskformer2_config(cfg)
    add_maskformer2_video_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    # Setup logger for "mask_former" module
    setup_logger(name="mask2former")
    setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="mask2former_video")
    return cfg


def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)
        if cfg.TEST.AUG.ENABLED:
            raise NotImplementedError
        if comm.is_main_process():
            verify_results(cfg, res)
        return res

    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    return trainer.train()


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )