Spaces:
Runtime error
Runtime error
File size: 9,790 Bytes
16aee22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/sukjunhwang/IFC
import itertools
import logging
import torch.utils.data
from detectron2.config import CfgNode, configurable
from detectron2.data.build import (
build_batch_data_loader,
load_proposals_into_dataset,
trivial_batch_collator,
)
from detectron2.data.catalog import DatasetCatalog
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.samplers import InferenceSampler, TrainingSampler
from detectron2.utils.comm import get_world_size
def _compute_num_images_per_worker(cfg: CfgNode):
num_workers = get_world_size()
images_per_batch = cfg.SOLVER.IMS_PER_BATCH
assert (
images_per_batch % num_workers == 0
), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
images_per_batch, num_workers
)
assert (
images_per_batch >= num_workers
), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
images_per_batch, num_workers
)
images_per_worker = images_per_batch // num_workers
return images_per_worker
def filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names):
"""
Filter out images with none annotations or only crowd annotations
(i.e., images without non-crowd annotations).
A common training-time preprocessing on COCO dataset.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
Returns:
list[dict]: the same format, but filtered.
"""
num_before = len(dataset_dicts)
def valid(anns):
for ann in anns:
if isinstance(ann, list):
for instance in ann:
if instance.get("iscrowd", 0) == 0:
return True
else:
if ann.get("iscrowd", 0) == 0:
return True
return False
dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images with no usable annotations. {} images left.".format(
num_before - num_after, num_after
)
)
return dataset_dicts
def get_detection_dataset_dicts(
dataset_names, filter_empty=True, proposal_files=None
):
"""
Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation.
Args:
dataset_names (str or list[str]): a dataset name or a list of dataset names
filter_empty (bool): whether to filter out images without instance annotations
proposal_files (list[str]): if given, a list of object proposal files
that match each dataset in `dataset_names`.
Returns:
list[dict]: a list of dicts following the standard dataset dict format.
"""
if isinstance(dataset_names, str):
dataset_names = [dataset_names]
assert len(dataset_names)
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
for dataset_name, dicts in zip(dataset_names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
if proposal_files is not None:
assert len(dataset_names) == len(proposal_files)
# load precomputed proposals from proposal files
dataset_dicts = [
load_proposals_into_dataset(dataset_i_dicts, proposal_file)
for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files)
]
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names)
assert len(dataset_dicts), "No valid data found in {}.".format(",".join(dataset_names))
return dataset_dicts
def _train_loader_from_config(cfg, mapper, *, dataset=None, sampler=None):
if dataset is None:
dataset = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, True)
if sampler is None:
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
logger = logging.getLogger(__name__)
logger.info("Using training sampler {}".format(sampler_name))
sampler = TrainingSampler(len(dataset))
return {
"dataset": dataset,
"sampler": sampler,
"mapper": mapper,
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH,
"aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
"num_workers": cfg.DATALOADER.NUM_WORKERS,
}
# TODO can allow dataset as an iterable or IterableDataset to make this function more general
@configurable(from_config=_train_loader_from_config)
def build_detection_train_loader(
dataset, *, mapper, sampler=None, total_batch_size, aspect_ratio_grouping=True, num_workers=0
):
"""
Build a dataloader for object detection with some default features.
This interface is experimental.
Args:
dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
or a map-style pytorch dataset. They can be obtained by using
:func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper (callable): a callable which takes a sample (dict) from dataset and
returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=True)``.
sampler (torch.utils.data.sampler.Sampler or None): a sampler that
produces indices to be applied on ``dataset``.
Default to :class:`TrainingSampler`, which coordinates a random shuffle
sequence across all workers.
total_batch_size (int): total batch size across all workers. Batching
simply puts data into a list.
aspect_ratio_grouping (bool): whether to group images with similar
aspect ratio for efficiency. When enabled, it requires each
element in dataset be a dict with keys "width" and "height".
num_workers (int): number of parallel data loading workers
Returns:
torch.utils.data.DataLoader: a dataloader. Each output from it is a
``list[mapped_element]`` of length ``total_batch_size / num_workers``,
where ``mapped_element`` is produced by the ``mapper``.
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torch.utils.data.sampler.Sampler)
return build_batch_data_loader(
dataset,
sampler,
total_batch_size,
aspect_ratio_grouping=aspect_ratio_grouping,
num_workers=num_workers,
)
def _test_loader_from_config(cfg, dataset_name, mapper=None):
"""
Uses the given `dataset_name` argument (instead of the names in cfg), because the
standard practice is to evaluate each test set individually (not combining them).
"""
dataset = get_detection_dataset_dicts(
[dataset_name],
filter_empty=False,
proposal_files=[
cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)]
]
if cfg.MODEL.LOAD_PROPOSALS
else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, False)
return {"dataset": dataset, "mapper": mapper, "num_workers": cfg.DATALOADER.NUM_WORKERS}
@configurable(from_config=_test_loader_from_config)
def build_detection_test_loader(dataset, *, mapper, num_workers=0):
"""
Similar to `build_detection_train_loader`, but uses a batch size of 1.
This interface is experimental.
Args:
dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
or a map-style pytorch dataset. They can be obtained by using
:func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper (callable): a callable which takes a sample (dict) from dataset
and returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=False)``.
num_workers (int): number of parallel data loading workers
Returns:
DataLoader: a torch DataLoader, that loads the given detection
dataset, with test-time transformation and batching.
Examples:
::
data_loader = build_detection_test_loader(
DatasetRegistry.get("my_test"),
mapper=DatasetMapper(...))
# or, instantiate with a CfgNode:
data_loader = build_detection_test_loader(cfg, "my_test")
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
sampler = InferenceSampler(len(dataset))
# Always use 1 image per worker during inference since this is the
# standard when reporting inference time in papers.
batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, 1, drop_last=False)
data_loader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_sampler=batch_sampler,
collate_fn=trivial_batch_collator,
)
return data_loader
|