Spaces:
Runtime error
Runtime error
File size: 5,300 Bytes
16aee22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Prepare Datasets for Mask2Former
A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog)
for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc).
This document explains how to setup the builtin datasets so they can be used by the above APIs.
[Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`,
and how to add new datasets to them.
MaskFormer has builtin support for a few datasets.
The datasets are assumed to exist in a directory specified by the environment variable
`DETECTRON2_DATASETS`.
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
```
$DETECTRON2_DATASETS/
ADEChallengeData2016/
coco/
cityscapes/
mapillary_vistas/
```
You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`.
If left unset, the default is `./datasets` relative to your current working directory.
The [model zoo](https://github.com/facebookresearch/MaskFormer/blob/master/MODEL_ZOO.md)
contains configs and models that use these builtin datasets.
## Expected dataset structure for [COCO](https://cocodataset.org/#download):
```
coco/
annotations/
instances_{train,val}2017.json
panoptic_{train,val}2017.json
{train,val}2017/
# image files that are mentioned in the corresponding json
panoptic_{train,val}2017/ # png annotations
panoptic_semseg_{train,val}2017/ # generated by the script mentioned below
```
Install panopticapi by:
```
pip install git+https://github.com/cocodataset/panopticapi.git
```
Then, run `python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py`, to extract semantic annotations from panoptic annotations (only used for evaluation).
## Expected dataset structure for [cityscapes](https://www.cityscapes-dataset.com/downloads/):
```
cityscapes/
gtFine/
train/
aachen/
color.png, instanceIds.png, labelIds.png, polygons.json,
labelTrainIds.png
...
val/
test/
# below are generated Cityscapes panoptic annotation
cityscapes_panoptic_train.json
cityscapes_panoptic_train/
cityscapes_panoptic_val.json
cityscapes_panoptic_val/
cityscapes_panoptic_test.json
cityscapes_panoptic_test/
leftImg8bit/
train/
val/
test/
```
Install cityscapes scripts by:
```
pip install git+https://github.com/mcordts/cityscapesScripts.git
```
Note: to create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with:
```
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createTrainIdLabelImgs.py
```
These files are not needed for instance segmentation.
Note: to generate Cityscapes panoptic dataset, run cityscapesescript with:
```
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createPanopticImgs.py
```
These files are not needed for semantic and instance segmentation.
## Expected dataset structure for [ADE20k](http://sceneparsing.csail.mit.edu/):
```
ADEChallengeData2016/
images/
annotations/
objectInfo150.txt
# download instance annotation
annotations_instance/
# generated by prepare_ade20k_sem_seg.py
annotations_detectron2/
# below are generated by prepare_ade20k_pan_seg.py
ade20k_panoptic_{train,val}.json
ade20k_panoptic_{train,val}/
# below are generated by prepare_ade20k_ins_seg.py
ade20k_instance_{train,val}.json
```
The directory `annotations_detectron2` is generated by running `python datasets/prepare_ade20k_sem_seg.py`.
Install panopticapi by:
```bash
pip install git+https://github.com/cocodataset/panopticapi.git
```
Download the instance annotation from http://sceneparsing.csail.mit.edu/:
```bash
wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
```
Then, run `python datasets/prepare_ade20k_pan_seg.py`, to combine semantic and instance annotations for panoptic annotations.
And run `python datasets/prepare_ade20k_ins_seg.py`, to extract instance annotations in COCO format.
## Expected dataset structure for [Mapillary Vistas](https://www.mapillary.com/dataset/vistas):
```
mapillary_vistas/
training/
images/
instances/
labels/
panoptic/
validation/
images/
instances/
labels/
panoptic/
mapillary_vistas_instance_{train,val}.json # generated by the script mentioned below
```
No preprocessing is needed for Mapillary Vistas on semantic and panoptic segmentation.
If you want to evaluate instance segmentation on Mapillary Vistas, run `python datasets/prepare_mapillary_vistas_ins_seg.py` to generate COCO-style instance annotations.
## Expected dataset structure for [YouTubeVIS 2019](https://competitions.codalab.org/competitions/20128):
```
ytvis_2019/
{train,valid,test}.json
{train,valid,test}/
Annotations/
JPEGImages/
```
## Expected dataset structure for [YouTubeVIS 2021](https://competitions.codalab.org/competitions/28988):
```
ytvis_2021/
{train,valid,test}.json
{train,valid,test}/
Annotations/
JPEGImages/
```
|