File size: 5,300 Bytes
16aee22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Prepare Datasets for Mask2Former

A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog)
for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc).
This document explains how to setup the builtin datasets so they can be used by the above APIs.
[Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`,
and how to add new datasets to them.

MaskFormer has builtin support for a few datasets.
The datasets are assumed to exist in a directory specified by the environment variable
`DETECTRON2_DATASETS`.
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
```
$DETECTRON2_DATASETS/
  ADEChallengeData2016/
  coco/
  cityscapes/
  mapillary_vistas/
```

You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`.
If left unset, the default is `./datasets` relative to your current working directory.

The [model zoo](https://github.com/facebookresearch/MaskFormer/blob/master/MODEL_ZOO.md)
contains configs and models that use these builtin datasets.


## Expected dataset structure for [COCO](https://cocodataset.org/#download):

```
coco/
  annotations/
    instances_{train,val}2017.json
    panoptic_{train,val}2017.json
  {train,val}2017/
    # image files that are mentioned in the corresponding json
  panoptic_{train,val}2017/  # png annotations
  panoptic_semseg_{train,val}2017/  # generated by the script mentioned below
```

Install panopticapi by:
```
pip install git+https://github.com/cocodataset/panopticapi.git
```
Then, run `python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py`, to extract semantic annotations from panoptic annotations (only used for evaluation).


## Expected dataset structure for [cityscapes](https://www.cityscapes-dataset.com/downloads/):
```
cityscapes/
  gtFine/
    train/
      aachen/
        color.png, instanceIds.png, labelIds.png, polygons.json,
        labelTrainIds.png
      ...
    val/
    test/
    # below are generated Cityscapes panoptic annotation
    cityscapes_panoptic_train.json
    cityscapes_panoptic_train/
    cityscapes_panoptic_val.json
    cityscapes_panoptic_val/
    cityscapes_panoptic_test.json
    cityscapes_panoptic_test/
  leftImg8bit/
    train/
    val/
    test/
```
Install cityscapes scripts by:
```
pip install git+https://github.com/mcordts/cityscapesScripts.git
```

Note: to create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with:
```
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createTrainIdLabelImgs.py
```
These files are not needed for instance segmentation.

Note: to generate Cityscapes panoptic dataset, run cityscapesescript with:
```
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createPanopticImgs.py
```
These files are not needed for semantic and instance segmentation.


## Expected dataset structure for [ADE20k](http://sceneparsing.csail.mit.edu/):
```
ADEChallengeData2016/
  images/
  annotations/
  objectInfo150.txt
  # download instance annotation
  annotations_instance/
  # generated by prepare_ade20k_sem_seg.py
  annotations_detectron2/
  # below are generated by prepare_ade20k_pan_seg.py
  ade20k_panoptic_{train,val}.json
  ade20k_panoptic_{train,val}/
  # below are generated by prepare_ade20k_ins_seg.py
  ade20k_instance_{train,val}.json
```

The directory `annotations_detectron2` is generated by running `python datasets/prepare_ade20k_sem_seg.py`.

Install panopticapi by:
```bash
pip install git+https://github.com/cocodataset/panopticapi.git
```

Download the instance annotation from http://sceneparsing.csail.mit.edu/:
```bash
wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
```

Then, run `python datasets/prepare_ade20k_pan_seg.py`, to combine semantic and instance annotations for panoptic annotations.

And run `python datasets/prepare_ade20k_ins_seg.py`, to extract instance annotations in COCO format.


## Expected dataset structure for [Mapillary Vistas](https://www.mapillary.com/dataset/vistas):
```
mapillary_vistas/
  training/
    images/
    instances/
    labels/
    panoptic/
  validation/
    images/
    instances/
    labels/
    panoptic/
  mapillary_vistas_instance_{train,val}.json  # generated by the script mentioned below
```

No preprocessing is needed for Mapillary Vistas on semantic and panoptic segmentation.

If you want to evaluate instance segmentation on Mapillary Vistas, run `python datasets/prepare_mapillary_vistas_ins_seg.py` to generate COCO-style instance annotations.


## Expected dataset structure for [YouTubeVIS 2019](https://competitions.codalab.org/competitions/20128):

```
ytvis_2019/
  {train,valid,test}.json
  {train,valid,test}/
    Annotations/
    JPEGImages/
```

## Expected dataset structure for [YouTubeVIS 2021](https://competitions.codalab.org/competitions/28988):

```
ytvis_2021/
  {train,valid,test}.json
  {train,valid,test}/
    Annotations/
    JPEGImages/
```