File size: 10,059 Bytes
e6e7cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import sys
from pathlib import Path
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[1].as_posix())  # add kapao/ to path

import argparse
from pytube import YouTube
import os.path as osp
from utils.torch_utils import select_device, time_sync
from utils.general import check_img_size
from utils.datasets import LoadImages
from models.experimental import attempt_load
import torch
import cv2
import numpy as np
import yaml
from tqdm import tqdm
import imageio
from val import run_nms, post_process_batch


VIDEO_NAME = 'Squash MegaRally 176 ReDux - Slow Mo Edition.mp4'
URL = 'https://www.youtube.com/watch?v=Dy62-eTNvY4&ab_channel=PSASQUASHTV'

GRAY = (200, 200, 200)
CROWD_THRES = 450  # max bbox size for crowd classification
CROWD_ALPHA = 0.5
CROWD_KP_SIZE = 2
CROWD_KP_THICK = 2
CROWD_SEG_THICK = 2

BLUE = (245, 140, 66)
ORANGE = (66, 140, 245)
PLAYER_ALPHA_BOX = 0.85
PLAYER_ALPHA_POSE = 0.3
PLAYER_KP_SIZE = 4
PLAYER_KP_THICK = 4
PLAYER_SEG_THICK = 4
FPS_TEXT_SIZE = 3


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, default='data/coco-kp.yaml')
    parser.add_argument('--imgsz', type=int, default=1280)
    parser.add_argument('--weights', default='kapao_s_coco.pt')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or cpu')
    parser.add_argument('--half', action='store_true')
    parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--no-kp-dets', action='store_true', help='do not use keypoint objects')
    parser.add_argument('--conf-thres-kp', type=float, default=0.5)
    parser.add_argument('--conf-thres-kp-person', type=float, default=0.2)
    parser.add_argument('--iou-thres-kp', type=float, default=0.45)
    parser.add_argument('--overwrite-tol', type=int, default=50)
    parser.add_argument('--scales', type=float, nargs='+', default=[1])
    parser.add_argument('--flips', type=int, nargs='+', default=[-1])
    parser.add_argument('--display', action='store_true', help='display inference results')
    parser.add_argument('--fps', action='store_true', help='display fps')
    parser.add_argument('--gif', action='store_true', help='create fig')
    parser.add_argument('--start', type=int, default=20, help='start time (s)')
    parser.add_argument('--end', type=int, default=80, help='end time (s)')
    args = parser.parse_args()

    with open(args.data) as f:
        data = yaml.safe_load(f)  # load data dict

    # add inference settings to data dict
    data['imgsz'] = args.imgsz
    data['conf_thres'] = args.conf_thres
    data['iou_thres'] = args.iou_thres
    data['use_kp_dets'] = not args.no_kp_dets
    data['conf_thres_kp'] = args.conf_thres_kp
    data['iou_thres_kp'] = args.iou_thres_kp
    data['conf_thres_kp_person'] = args.conf_thres_kp_person
    data['overwrite_tol'] = args.overwrite_tol
    data['scales'] = args.scales
    data['flips'] = [None if f == -1 else f for f in args.flips]

    if not osp.isfile(VIDEO_NAME):
        yt = YouTube(URL)
        # [print(s) for s in yt.streams]
        stream = [s for s in yt.streams if s.itag == 137][0]  # 1080p, non-progressive
        print('Downloading squash demo video...')
        stream.download()
        print('Done.')

    device = select_device(args.device, batch_size=1)
    print('Using device: {}'.format(device))

    model = attempt_load(args.weights, map_location=device)  # load FP32 model
    half = args.half & (device.type != 'cpu')
    if half:  # half precision only supported on CUDA
        model.half()
    stride = int(model.stride.max())  # model stride

    imgsz = check_img_size(args.imgsz, s=stride)  # check image size
    dataset = LoadImages('./{}'.format(VIDEO_NAME), img_size=imgsz, stride=stride, auto=True)

    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once

    cap = dataset.cap
    cap.set(cv2.CAP_PROP_POS_MSEC, args.start * 1000)
    fps = cap.get(cv2.CAP_PROP_FPS)
    n = int(fps * (args.end - args.start))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    gif_frames = []
    video_name = 'squash_inference_{}'.format(osp.splitext(args.weights)[0])

    if not args.display:
        writer = cv2.VideoWriter(video_name + '.mp4',
                                 cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
        if not args.fps:  # tqdm might slows down inference
            dataset = tqdm(dataset, desc='Writing inference video', total=n)

    t0 = time_sync()
    for i, (path, img, im0, _) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim

        out = model(img, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])[0]
        person_dets, kp_dets = run_nms(data, out)
        bboxes, poses, _, _, _ = post_process_batch(data, img, [], [[im0.shape[:2]]], person_dets, kp_dets)

        bboxes = np.array(bboxes)
        poses = np.array(poses)

        im0_copy = im0.copy()
        player_idx = []

        # DRAW CROWD POSES
        for j, (bbox, pose) in enumerate(zip(bboxes, poses)):
            x1, y1, x2, y2 = bbox
            size = ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
            if size < CROWD_THRES:
                cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), GRAY, thickness=2)
                for x, y, _ in pose[:5]:
                    cv2.circle(im0_copy, (int(x), int(y)), CROWD_KP_SIZE, GRAY, CROWD_KP_THICK)
                for seg in data['segments'].values():
                    pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
                    pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
                    cv2.line(im0_copy, pt1, pt2, GRAY, CROWD_SEG_THICK)
            else:
                player_idx.append(j)
        im0 = cv2.addWeighted(im0, CROWD_ALPHA, im0_copy, 1 - CROWD_ALPHA, gamma=0)

        # DRAW PLAYER POSES
        player_bboxes = bboxes[player_idx][:2]
        player_poses = poses[player_idx][:2]

        def draw_player_poses(im0, missing=-1):
            for j, (bbox, pose, color) in enumerate(zip(
                    player_bboxes[[orange_player, blue_player]],
                    player_poses[[orange_player, blue_player]],
                    [ORANGE, BLUE])):
                if j == missing:
                    continue
                im0_copy = im0.copy()
                x1, y1, x2, y2 = bbox
                cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness=-1)
                im0 = cv2.addWeighted(im0, PLAYER_ALPHA_BOX, im0_copy, 1 - PLAYER_ALPHA_BOX, gamma=0)
                im0_copy = im0.copy()
                for x, y, _ in pose:
                    cv2.circle(im0_copy, (int(x), int(y)), PLAYER_KP_SIZE, color, PLAYER_KP_THICK)
                for seg in data['segments'].values():
                    pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
                    pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
                    cv2.line(im0_copy, pt1, pt2, color, PLAYER_SEG_THICK)
                im0 = cv2.addWeighted(im0, PLAYER_ALPHA_POSE, im0_copy, 1 - PLAYER_ALPHA_POSE, gamma=0)
            return im0

        if i == 0:
            # orange player on left at start
            orange_player = np.argmin(player_bboxes[:, 0])
            blue_player = int(not orange_player)
            im0 = draw_player_poses(im0)
        else:
            # simple player tracking based on frame-to-frame pose difference
            dist = []
            for pose in poses_last:
                dist.append(np.mean(np.linalg.norm(player_poses[0, :, :2] - pose[:, :2], axis=-1)))
            if np.argmin(dist) == 0:
                orange_player = 0
            else:
                orange_player = 1
            blue_player = int(not orange_player)

            # if only one player detected, find which player is missing
            missing = -1
            if len(player_poses) == 1:
                if orange_player == 0:  # missing blue player
                    player_poses = np.concatenate((player_poses, poses_last[1:]), axis=0)
                    player_bboxes = np.concatenate((player_bboxes, bboxes_last[1:]), axis=0)
                    missing = 1
                else:  # missing orange player
                    player_poses = np.concatenate((player_poses, poses_last[:1]), axis=0)
                    player_bboxes = np.concatenate((player_bboxes, bboxes_last[:1]), axis=0)
                    missing = 0
            im0 = draw_player_poses(im0, missing)

        bboxes_last = player_bboxes[[orange_player, blue_player]]
        poses_last = player_poses[[orange_player, blue_player]]

        if i == 0:
            t = time_sync() - t0
        else:
            t = time_sync() - t1

        if args.fps:
            s = FPS_TEXT_SIZE
            cv2.putText(im0, '{:.1f} FPS'.format(1 / t), (5*s, 25*s),
                        cv2.FONT_HERSHEY_SIMPLEX, s, (255, 255, 255), thickness=2*s)

        if args.gif:
            gif_frames.append(cv2.resize(im0, dsize=None, fx=0.25, fy=0.25)[:, :, [2, 1, 0]])
        elif not args.display:
            writer.write(im0)
        else:
            cv2.imshow('', cv2.resize(im0, dsize=None, fx=0.5, fy=0.5))
            cv2.waitKey(1)

        t1 = time_sync()
        if i == n - 1:
            break

    cv2.destroyAllWindows()
    cap.release()
    if not args.display:
        writer.release()

    if args.gif:
        print('Saving GIF...')
        with imageio.get_writer(video_name + '.gif', mode="I", fps=fps) as writer:
            for idx, frame in tqdm(enumerate(gif_frames)):
                writer.append_data(frame)