File size: 10,059 Bytes
e6e7cb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import sys
from pathlib import Path
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[1].as_posix()) # add kapao/ to path
import argparse
from pytube import YouTube
import os.path as osp
from utils.torch_utils import select_device, time_sync
from utils.general import check_img_size
from utils.datasets import LoadImages
from models.experimental import attempt_load
import torch
import cv2
import numpy as np
import yaml
from tqdm import tqdm
import imageio
from val import run_nms, post_process_batch
VIDEO_NAME = 'Squash MegaRally 176 ReDux - Slow Mo Edition.mp4'
URL = 'https://www.youtube.com/watch?v=Dy62-eTNvY4&ab_channel=PSASQUASHTV'
GRAY = (200, 200, 200)
CROWD_THRES = 450 # max bbox size for crowd classification
CROWD_ALPHA = 0.5
CROWD_KP_SIZE = 2
CROWD_KP_THICK = 2
CROWD_SEG_THICK = 2
BLUE = (245, 140, 66)
ORANGE = (66, 140, 245)
PLAYER_ALPHA_BOX = 0.85
PLAYER_ALPHA_POSE = 0.3
PLAYER_KP_SIZE = 4
PLAYER_KP_THICK = 4
PLAYER_SEG_THICK = 4
FPS_TEXT_SIZE = 3
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='data/coco-kp.yaml')
parser.add_argument('--imgsz', type=int, default=1280)
parser.add_argument('--weights', default='kapao_s_coco.pt')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or cpu')
parser.add_argument('--half', action='store_true')
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--no-kp-dets', action='store_true', help='do not use keypoint objects')
parser.add_argument('--conf-thres-kp', type=float, default=0.5)
parser.add_argument('--conf-thres-kp-person', type=float, default=0.2)
parser.add_argument('--iou-thres-kp', type=float, default=0.45)
parser.add_argument('--overwrite-tol', type=int, default=50)
parser.add_argument('--scales', type=float, nargs='+', default=[1])
parser.add_argument('--flips', type=int, nargs='+', default=[-1])
parser.add_argument('--display', action='store_true', help='display inference results')
parser.add_argument('--fps', action='store_true', help='display fps')
parser.add_argument('--gif', action='store_true', help='create fig')
parser.add_argument('--start', type=int, default=20, help='start time (s)')
parser.add_argument('--end', type=int, default=80, help='end time (s)')
args = parser.parse_args()
with open(args.data) as f:
data = yaml.safe_load(f) # load data dict
# add inference settings to data dict
data['imgsz'] = args.imgsz
data['conf_thres'] = args.conf_thres
data['iou_thres'] = args.iou_thres
data['use_kp_dets'] = not args.no_kp_dets
data['conf_thres_kp'] = args.conf_thres_kp
data['iou_thres_kp'] = args.iou_thres_kp
data['conf_thres_kp_person'] = args.conf_thres_kp_person
data['overwrite_tol'] = args.overwrite_tol
data['scales'] = args.scales
data['flips'] = [None if f == -1 else f for f in args.flips]
if not osp.isfile(VIDEO_NAME):
yt = YouTube(URL)
# [print(s) for s in yt.streams]
stream = [s for s in yt.streams if s.itag == 137][0] # 1080p, non-progressive
print('Downloading squash demo video...')
stream.download()
print('Done.')
device = select_device(args.device, batch_size=1)
print('Using device: {}'.format(device))
model = attempt_load(args.weights, map_location=device) # load FP32 model
half = args.half & (device.type != 'cpu')
if half: # half precision only supported on CUDA
model.half()
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(args.imgsz, s=stride) # check image size
dataset = LoadImages('./{}'.format(VIDEO_NAME), img_size=imgsz, stride=stride, auto=True)
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
cap = dataset.cap
cap.set(cv2.CAP_PROP_POS_MSEC, args.start * 1000)
fps = cap.get(cv2.CAP_PROP_FPS)
n = int(fps * (args.end - args.start))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
gif_frames = []
video_name = 'squash_inference_{}'.format(osp.splitext(args.weights)[0])
if not args.display:
writer = cv2.VideoWriter(video_name + '.mp4',
cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
if not args.fps: # tqdm might slows down inference
dataset = tqdm(dataset, desc='Writing inference video', total=n)
t0 = time_sync()
for i, (path, img, im0, _) in enumerate(dataset):
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
if len(img.shape) == 3:
img = img[None] # expand for batch dim
out = model(img, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])[0]
person_dets, kp_dets = run_nms(data, out)
bboxes, poses, _, _, _ = post_process_batch(data, img, [], [[im0.shape[:2]]], person_dets, kp_dets)
bboxes = np.array(bboxes)
poses = np.array(poses)
im0_copy = im0.copy()
player_idx = []
# DRAW CROWD POSES
for j, (bbox, pose) in enumerate(zip(bboxes, poses)):
x1, y1, x2, y2 = bbox
size = ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
if size < CROWD_THRES:
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), GRAY, thickness=2)
for x, y, _ in pose[:5]:
cv2.circle(im0_copy, (int(x), int(y)), CROWD_KP_SIZE, GRAY, CROWD_KP_THICK)
for seg in data['segments'].values():
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
cv2.line(im0_copy, pt1, pt2, GRAY, CROWD_SEG_THICK)
else:
player_idx.append(j)
im0 = cv2.addWeighted(im0, CROWD_ALPHA, im0_copy, 1 - CROWD_ALPHA, gamma=0)
# DRAW PLAYER POSES
player_bboxes = bboxes[player_idx][:2]
player_poses = poses[player_idx][:2]
def draw_player_poses(im0, missing=-1):
for j, (bbox, pose, color) in enumerate(zip(
player_bboxes[[orange_player, blue_player]],
player_poses[[orange_player, blue_player]],
[ORANGE, BLUE])):
if j == missing:
continue
im0_copy = im0.copy()
x1, y1, x2, y2 = bbox
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness=-1)
im0 = cv2.addWeighted(im0, PLAYER_ALPHA_BOX, im0_copy, 1 - PLAYER_ALPHA_BOX, gamma=0)
im0_copy = im0.copy()
for x, y, _ in pose:
cv2.circle(im0_copy, (int(x), int(y)), PLAYER_KP_SIZE, color, PLAYER_KP_THICK)
for seg in data['segments'].values():
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
cv2.line(im0_copy, pt1, pt2, color, PLAYER_SEG_THICK)
im0 = cv2.addWeighted(im0, PLAYER_ALPHA_POSE, im0_copy, 1 - PLAYER_ALPHA_POSE, gamma=0)
return im0
if i == 0:
# orange player on left at start
orange_player = np.argmin(player_bboxes[:, 0])
blue_player = int(not orange_player)
im0 = draw_player_poses(im0)
else:
# simple player tracking based on frame-to-frame pose difference
dist = []
for pose in poses_last:
dist.append(np.mean(np.linalg.norm(player_poses[0, :, :2] - pose[:, :2], axis=-1)))
if np.argmin(dist) == 0:
orange_player = 0
else:
orange_player = 1
blue_player = int(not orange_player)
# if only one player detected, find which player is missing
missing = -1
if len(player_poses) == 1:
if orange_player == 0: # missing blue player
player_poses = np.concatenate((player_poses, poses_last[1:]), axis=0)
player_bboxes = np.concatenate((player_bboxes, bboxes_last[1:]), axis=0)
missing = 1
else: # missing orange player
player_poses = np.concatenate((player_poses, poses_last[:1]), axis=0)
player_bboxes = np.concatenate((player_bboxes, bboxes_last[:1]), axis=0)
missing = 0
im0 = draw_player_poses(im0, missing)
bboxes_last = player_bboxes[[orange_player, blue_player]]
poses_last = player_poses[[orange_player, blue_player]]
if i == 0:
t = time_sync() - t0
else:
t = time_sync() - t1
if args.fps:
s = FPS_TEXT_SIZE
cv2.putText(im0, '{:.1f} FPS'.format(1 / t), (5*s, 25*s),
cv2.FONT_HERSHEY_SIMPLEX, s, (255, 255, 255), thickness=2*s)
if args.gif:
gif_frames.append(cv2.resize(im0, dsize=None, fx=0.25, fy=0.25)[:, :, [2, 1, 0]])
elif not args.display:
writer.write(im0)
else:
cv2.imshow('', cv2.resize(im0, dsize=None, fx=0.5, fy=0.5))
cv2.waitKey(1)
t1 = time_sync()
if i == n - 1:
break
cv2.destroyAllWindows()
cap.release()
if not args.display:
writer.release()
if args.gif:
print('Saving GIF...')
with imageio.get_writer(video_name + '.gif', mode="I", fps=fps) as writer:
for idx, frame in tqdm(enumerate(gif_frames)):
writer.append_data(frame)
|