File size: 19,841 Bytes
c2f174c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os
import random
import matplotlib
import matplotlib.pyplot as plt

matplotlib.use('Agg')

import torch
from torch import nn, autograd
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F

from utils import common, train_utils
from criteria import id_loss, moco_loss
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from criteria.lpips.lpips import LPIPS
from models.psp import pSp
from models.latent_codes_pool import LatentCodesPool
from models.discriminator import LatentCodesDiscriminator
from models.encoders.psp_encoders import ProgressiveStage
from training.ranger import Ranger

random.seed(0)
torch.manual_seed(0)


class Coach:
    def __init__(self, opts, prev_train_checkpoint=None):
        self.opts = opts

        self.global_step = 0

        self.device = 'cuda:0'
        self.opts.device = self.device
        # Initialize network
        self.net = pSp(self.opts).to(self.device)

        # Initialize loss
        if self.opts.lpips_lambda > 0:
            self.lpips_loss = LPIPS(net_type=self.opts.lpips_type).to(self.device).eval()
        if self.opts.id_lambda > 0:
            if 'ffhq' in self.opts.dataset_type or 'celeb' in self.opts.dataset_type:
                self.id_loss = id_loss.IDLoss().to(self.device).eval()
            else:
                self.id_loss = moco_loss.MocoLoss(opts).to(self.device).eval()
        self.mse_loss = nn.MSELoss().to(self.device).eval()

        # Initialize optimizer
        self.optimizer = self.configure_optimizers()

        # Initialize discriminator
        if self.opts.w_discriminator_lambda > 0:
            self.discriminator = LatentCodesDiscriminator(512, 4).to(self.device)
            self.discriminator_optimizer = torch.optim.Adam(list(self.discriminator.parameters()),
                                                            lr=opts.w_discriminator_lr)
            self.real_w_pool = LatentCodesPool(self.opts.w_pool_size)
            self.fake_w_pool = LatentCodesPool(self.opts.w_pool_size)

        # Initialize dataset
        self.train_dataset, self.test_dataset = self.configure_datasets()
        self.train_dataloader = DataLoader(self.train_dataset,
                                           batch_size=self.opts.batch_size,
                                           shuffle=True,
                                           num_workers=int(self.opts.workers),
                                           drop_last=True)
        self.test_dataloader = DataLoader(self.test_dataset,
                                          batch_size=self.opts.test_batch_size,
                                          shuffle=False,
                                          num_workers=int(self.opts.test_workers),
                                          drop_last=True)

        # Initialize logger
        log_dir = os.path.join(opts.exp_dir, 'logs')
        os.makedirs(log_dir, exist_ok=True)
        self.logger = SummaryWriter(log_dir=log_dir)

        # Initialize checkpoint dir
        self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
        os.makedirs(self.checkpoint_dir, exist_ok=True)
        self.best_val_loss = None
        if self.opts.save_interval is None:
            self.opts.save_interval = self.opts.max_steps

        if prev_train_checkpoint is not None:
            self.load_from_train_checkpoint(prev_train_checkpoint)
            prev_train_checkpoint = None

    def load_from_train_checkpoint(self, ckpt):
        print('Loading previous training data...')
        self.global_step = ckpt['global_step'] + 1
        self.best_val_loss = ckpt['best_val_loss']
        self.net.load_state_dict(ckpt['state_dict'])

        if self.opts.keep_optimizer:
            self.optimizer.load_state_dict(ckpt['optimizer'])
        if self.opts.w_discriminator_lambda > 0:
            self.discriminator.load_state_dict(ckpt['discriminator_state_dict'])
            self.discriminator_optimizer.load_state_dict(ckpt['discriminator_optimizer_state_dict'])
        if self.opts.progressive_steps:
            self.check_for_progressive_training_update(is_resume_from_ckpt=True)
        print(f'Resuming training from step {self.global_step}')

    def train(self):
        self.net.train()
        if self.opts.progressive_steps:
            self.check_for_progressive_training_update()
        while self.global_step < self.opts.max_steps:
            for batch_idx, batch in enumerate(self.train_dataloader):
                loss_dict = {}
                if self.is_training_discriminator():
                    loss_dict = self.train_discriminator(batch)
                x, y, y_hat, latent = self.forward(batch)
                loss, encoder_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
                loss_dict = {**loss_dict, **encoder_loss_dict}
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()

                # Logging related
                if self.global_step % self.opts.image_interval == 0 or (
                        self.global_step < 1000 and self.global_step % 25 == 0):
                    self.parse_and_log_images(id_logs, x, y, y_hat, title='images/train/faces')
                if self.global_step % self.opts.board_interval == 0:
                    self.print_metrics(loss_dict, prefix='train')
                    self.log_metrics(loss_dict, prefix='train')

                # Validation related
                val_loss_dict = None
                if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps:
                    val_loss_dict = self.validate()
                    if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss):
                        self.best_val_loss = val_loss_dict['loss']
                        self.checkpoint_me(val_loss_dict, is_best=True)

                if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
                    if val_loss_dict is not None:
                        self.checkpoint_me(val_loss_dict, is_best=False)
                    else:
                        self.checkpoint_me(loss_dict, is_best=False)

                if self.global_step == self.opts.max_steps:
                    print('OMG, finished training!')
                    break

                self.global_step += 1
                if self.opts.progressive_steps:
                    self.check_for_progressive_training_update()

    def check_for_progressive_training_update(self, is_resume_from_ckpt=False):
        for i in range(len(self.opts.progressive_steps)):
            if is_resume_from_ckpt and self.global_step >= self.opts.progressive_steps[i]:  # Case checkpoint
                self.net.encoder.set_progressive_stage(ProgressiveStage(i))
            if self.global_step == self.opts.progressive_steps[i]:   # Case training reached progressive step
                self.net.encoder.set_progressive_stage(ProgressiveStage(i))

    def validate(self):
        self.net.eval()
        agg_loss_dict = []
        for batch_idx, batch in enumerate(self.test_dataloader):
            cur_loss_dict = {}
            if self.is_training_discriminator():
                cur_loss_dict = self.validate_discriminator(batch)
            with torch.no_grad():
                x, y, y_hat, latent = self.forward(batch)
                loss, cur_encoder_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
                cur_loss_dict = {**cur_loss_dict, **cur_encoder_loss_dict}
            agg_loss_dict.append(cur_loss_dict)

            # Logging related
            self.parse_and_log_images(id_logs, x, y, y_hat,
                                      title='images/test/faces',
                                      subscript='{:04d}'.format(batch_idx))

            # For first step just do sanity test on small amount of data
            if self.global_step == 0 and batch_idx >= 4:
                self.net.train()
                return None  # Do not log, inaccurate in first batch

        loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict)
        self.log_metrics(loss_dict, prefix='test')
        self.print_metrics(loss_dict, prefix='test')

        self.net.train()
        return loss_dict

    def checkpoint_me(self, loss_dict, is_best):
        save_name = 'best_model.pt' if is_best else 'iteration_{}.pt'.format(self.global_step)
        save_dict = self.__get_save_dict()
        checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
        torch.save(save_dict, checkpoint_path)
        with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
            if is_best:
                f.write(
                    '**Best**: Step - {}, Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict))
            else:
                f.write('Step - {}, \n{}\n'.format(self.global_step, loss_dict))

    def configure_optimizers(self):
        params = list(self.net.encoder.parameters())
        if self.opts.train_decoder:
            params += list(self.net.decoder.parameters())
        else:
            self.requires_grad(self.net.decoder, False)
        if self.opts.optim_name == 'adam':
            optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
        else:
            optimizer = Ranger(params, lr=self.opts.learning_rate)
        return optimizer

    def configure_datasets(self):
        if self.opts.dataset_type not in data_configs.DATASETS.keys():
            Exception('{} is not a valid dataset_type'.format(self.opts.dataset_type))
        print('Loading dataset for {}'.format(self.opts.dataset_type))
        dataset_args = data_configs.DATASETS[self.opts.dataset_type]
        transforms_dict = dataset_args['transforms'](self.opts).get_transforms()
        train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
                                      target_root=dataset_args['train_target_root'],
                                      source_transform=transforms_dict['transform_source'],
                                      target_transform=transforms_dict['transform_gt_train'],
                                      opts=self.opts)
        test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'],
                                     target_root=dataset_args['test_target_root'],
                                     source_transform=transforms_dict['transform_source'],
                                     target_transform=transforms_dict['transform_test'],
                                     opts=self.opts)
        print("Number of training samples: {}".format(len(train_dataset)))
        print("Number of test samples: {}".format(len(test_dataset)))
        return train_dataset, test_dataset

    def calc_loss(self, x, y, y_hat, latent):
        loss_dict = {}
        loss = 0.0
        id_logs = None
        if self.is_training_discriminator():  # Adversarial loss
            loss_disc = 0.
            dims_to_discriminate = self.get_dims_to_discriminate() if self.is_progressive_training() else \
                list(range(self.net.decoder.n_latent))

            for i in dims_to_discriminate:
                w = latent[:, i, :]
                fake_pred = self.discriminator(w)
                loss_disc += F.softplus(-fake_pred).mean()
            loss_disc /= len(dims_to_discriminate)
            loss_dict['encoder_discriminator_loss'] = float(loss_disc)
            loss += self.opts.w_discriminator_lambda * loss_disc

        if self.opts.progressive_steps and self.net.encoder.progressive_stage.value != 18:  # delta regularization loss
            total_delta_loss = 0
            deltas_latent_dims = self.net.encoder.get_deltas_starting_dimensions()

            first_w = latent[:, 0, :]
            for i in range(1, self.net.encoder.progressive_stage.value + 1):
                curr_dim = deltas_latent_dims[i]
                delta = latent[:, curr_dim, :] - first_w
                delta_loss = torch.norm(delta, self.opts.delta_norm, dim=1).mean()
                loss_dict[f"delta{i}_loss"] = float(delta_loss)
                total_delta_loss += delta_loss
            loss_dict['total_delta_loss'] = float(total_delta_loss)
            loss += self.opts.delta_norm_lambda * total_delta_loss

        if self.opts.id_lambda > 0:  # Similarity loss
            loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x)
            loss_dict['loss_id'] = float(loss_id)
            loss_dict['id_improve'] = float(sim_improvement)
            loss += loss_id * self.opts.id_lambda
        if self.opts.l2_lambda > 0:
            loss_l2 = F.mse_loss(y_hat, y)
            loss_dict['loss_l2'] = float(loss_l2)
            loss += loss_l2 * self.opts.l2_lambda
        if self.opts.lpips_lambda > 0:
            loss_lpips = self.lpips_loss(y_hat, y)
            loss_dict['loss_lpips'] = float(loss_lpips)
            loss += loss_lpips * self.opts.lpips_lambda
        loss_dict['loss'] = float(loss)
        return loss, loss_dict, id_logs

    def forward(self, batch):
        x, y = batch
        x, y = x.to(self.device).float(), y.to(self.device).float()
        y_hat, latent = self.net.forward(x, return_latents=True)
        if self.opts.dataset_type == "cars_encode":
            y_hat = y_hat[:, :, 32:224, :]
        return x, y, y_hat, latent

    def log_metrics(self, metrics_dict, prefix):
        for key, value in metrics_dict.items():
            self.logger.add_scalar('{}/{}'.format(prefix, key), value, self.global_step)

    def print_metrics(self, metrics_dict, prefix):
        print('Metrics for {}, step {}'.format(prefix, self.global_step))
        for key, value in metrics_dict.items():
            print('\t{} = '.format(key), value)

    def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2):
        im_data = []
        for i in range(display_count):
            cur_im_data = {
                'input_face': common.log_input_image(x[i], self.opts),
                'target_face': common.tensor2im(y[i]),
                'output_face': common.tensor2im(y_hat[i]),
            }
            if id_logs is not None:
                for key in id_logs[i]:
                    cur_im_data[key] = id_logs[i][key]
            im_data.append(cur_im_data)
        self.log_images(title, im_data=im_data, subscript=subscript)

    def log_images(self, name, im_data, subscript=None, log_latest=False):
        fig = common.vis_faces(im_data)
        step = self.global_step
        if log_latest:
            step = 0
        if subscript:
            path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step))
        else:
            path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step))
        os.makedirs(os.path.dirname(path), exist_ok=True)
        fig.savefig(path)
        plt.close(fig)

    def __get_save_dict(self):
        save_dict = {
            'state_dict': self.net.state_dict(),
            'opts': vars(self.opts)
        }
        # save the latent avg in state_dict for inference if truncation of w was used during training
        if self.opts.start_from_latent_avg:
            save_dict['latent_avg'] = self.net.latent_avg

        if self.opts.save_training_data:  # Save necessary information to enable training continuation from checkpoint
            save_dict['global_step'] = self.global_step
            save_dict['optimizer'] = self.optimizer.state_dict()
            save_dict['best_val_loss'] = self.best_val_loss
            if self.opts.w_discriminator_lambda > 0:
                save_dict['discriminator_state_dict'] = self.discriminator.state_dict()
                save_dict['discriminator_optimizer_state_dict'] = self.discriminator_optimizer.state_dict()
        return save_dict

    def get_dims_to_discriminate(self):
        deltas_starting_dimensions = self.net.encoder.get_deltas_starting_dimensions()
        return deltas_starting_dimensions[:self.net.encoder.progressive_stage.value + 1]

    def is_progressive_training(self):
        return self.opts.progressive_steps is not None

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Discriminator ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

    def is_training_discriminator(self):
        return self.opts.w_discriminator_lambda > 0

    @staticmethod
    def discriminator_loss(real_pred, fake_pred, loss_dict):
        real_loss = F.softplus(-real_pred).mean()
        fake_loss = F.softplus(fake_pred).mean()

        loss_dict['d_real_loss'] = float(real_loss)
        loss_dict['d_fake_loss'] = float(fake_loss)

        return real_loss + fake_loss

    @staticmethod
    def discriminator_r1_loss(real_pred, real_w):
        grad_real, = autograd.grad(
            outputs=real_pred.sum(), inputs=real_w, create_graph=True
        )
        grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()

        return grad_penalty

    @staticmethod
    def requires_grad(model, flag=True):
        for p in model.parameters():
            p.requires_grad = flag

    def train_discriminator(self, batch):
        loss_dict = {}
        x, _ = batch
        x = x.to(self.device).float()
        self.requires_grad(self.discriminator, True)

        with torch.no_grad():
            real_w, fake_w = self.sample_real_and_fake_latents(x)
        real_pred = self.discriminator(real_w)
        fake_pred = self.discriminator(fake_w)
        loss = self.discriminator_loss(real_pred, fake_pred, loss_dict)
        loss_dict['discriminator_loss'] = float(loss)

        self.discriminator_optimizer.zero_grad()
        loss.backward()
        self.discriminator_optimizer.step()

        # r1 regularization
        d_regularize = self.global_step % self.opts.d_reg_every == 0
        if d_regularize:
            real_w = real_w.detach()
            real_w.requires_grad = True
            real_pred = self.discriminator(real_w)
            r1_loss = self.discriminator_r1_loss(real_pred, real_w)

            self.discriminator.zero_grad()
            r1_final_loss = self.opts.r1 / 2 * r1_loss * self.opts.d_reg_every + 0 * real_pred[0]
            r1_final_loss.backward()
            self.discriminator_optimizer.step()
            loss_dict['discriminator_r1_loss'] = float(r1_final_loss)

        # Reset to previous state
        self.requires_grad(self.discriminator, False)

        return loss_dict

    def validate_discriminator(self, test_batch):
        with torch.no_grad():
            loss_dict = {}
            x, _ = test_batch
            x = x.to(self.device).float()
            real_w, fake_w = self.sample_real_and_fake_latents(x)
            real_pred = self.discriminator(real_w)
            fake_pred = self.discriminator(fake_w)
            loss = self.discriminator_loss(real_pred, fake_pred, loss_dict)
            loss_dict['discriminator_loss'] = float(loss)
            return loss_dict

    def sample_real_and_fake_latents(self, x):
        sample_z = torch.randn(self.opts.batch_size, 512, device=self.device)
        real_w = self.net.decoder.get_latent(sample_z)
        fake_w = self.net.encoder(x)
        if self.is_progressive_training():  # When progressive training, feed only unique w's
            dims_to_discriminate = self.get_dims_to_discriminate()
            fake_w = fake_w[:, dims_to_discriminate, :]
        if self.opts.use_w_pool:
            real_w = self.real_w_pool.query(real_w)
            fake_w = self.fake_w_pool.query(fake_w)
        if fake_w.ndim == 3:
            fake_w = fake_w[:, 0, :]
        return real_w, fake_w