File size: 5,149 Bytes
8d4d98f
 
 
 
f338a52
2a30e2f
 
 
 
 
58091b8
8b17f8c
8d4d98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2d4dc
8d4d98f
 
 
 
 
 
58091b8
 
 
8d4d98f
2a30e2f
 
 
 
 
 
 
 
 
8d4d98f
 
 
d8e7405
8d4d98f
 
 
 
 
ddaf006
8d4d98f
 
 
 
8fd4221
 
 
 
ec8f0b0
 
 
8d4d98f
 
 
 
 
 
 
 
 
474b6cf
46a015d
 
feb9da2
aa0db9c
91959e5
 
38887ff
91959e5
 
 
 
 
ec8f0b0
 
 
 
 
91959e5
 
2a30e2f
58091b8
2a30e2f
58091b8
2a30e2f
 
 
 
 
 
4c71d5b
76c051f
 
2a30e2f
 
91959e5
 
 
ec8f0b0
91959e5
 
ec8f0b0
 
 
 
aa0db9c
a058c0e
3f2d4dc
 
8d4d98f
a058c0e
5d457fc
aa0db9c
fec4733
5d457fc
ec8f0b0
f338a52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
from PIL import Image
import torch
import gradio as gr
os.system("pip install gradio==2.5.3")

os.system("pip install facexlib")

from facexlib.utils.face_restoration_helper import FaceRestoreHelper
#os.system("pip install autocrop")
#os.system("pip install dlib")
#from autocrop import Cropper
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random

import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *
from e4e_projection import projection as e4e_projection

from copy import deepcopy
import imageio

os.makedirs('inversion_codes', exist_ok=True)
os.makedirs('style_images', exist_ok=True)
os.makedirs('style_images_aligned', exist_ok=True)
os.makedirs('models', exist_ok=True)

#os.system("wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2")
#os.system("bzip2 -dk shape_predictor_68_face_landmarks.dat.bz2")
#os.system("mv shape_predictor_68_face_landmarks.dat models/dlibshape_predictor_68_face_landmarks.dat")

#cropper = Cropper(face_percent=80)

face_helper = FaceRestoreHelper(
        upscale_factor=0,
        face_size=512,
        crop_ratio=(1, 1),
        det_model='retinaface_resnet50',
        save_ext='png',
        device='cpu')

device = 'cpu' 

os.system("gdown https://drive.google.com/uc?id=1_cTsjqzD_X9DK3t3IZE53huKgnzj_btZ")

latent_dim = 512

# Load original generator
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load('stylegan2-ffhq-config-f.pt', map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)

# to be finetuned generator
generatorjojo = deepcopy(original_generator)

generatordisney = deepcopy(original_generator)

generatorjinx = deepcopy(original_generator)



transform = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ]
)

os.system("gdown https://drive.google.com/uc?id=1jtCg8HQ6RlTmLdnbT2PfW1FJ2AYkWqsK")
os.system("cp e4e_ffhq_encode.pt models/e4e_ffhq_encode.pt")

os.system("gdown https://drive.google.com/uc?id=1-8E0PFT37v5fZs-61oIrFbNpE28Unp2y")

ckptjojo = torch.load('jojo.pt', map_location=lambda storage, loc: storage)
generatorjojo.load_state_dict(ckptjojo["g"], strict=False)

os.system("gdown https://drive.google.com/uc?id=1Bnh02DjfvN_Wm8c4JdOiNV4q9J7Z_tsi")

ckptdisney = torch.load('disney_preserve_color.pt', map_location=lambda storage, loc: storage)
generatordisney.load_state_dict(ckptdisney["g"], strict=False)

os.system("gdown https://drive.google.com/uc?id=1jElwHxaYPod5Itdy18izJk49K1nl4ney")

ckptjinx = torch.load('arcane_jinx_preserve_color.pt', map_location=lambda storage, loc: storage)
generatorjinx.load_state_dict(ckptjinx["g"], strict=False)


def inference(img, model):    
    face_helper.clean_all()
    #aligned_face = align_face(img)
    #cropped_array = cropper.crop(img[:,:,::-1])
    
    #if cropped_array.any():
        #aligned_face = Image.fromarray(cropped_array)
    #else:
        #aligned_face = Image.fromarray(img[:,:,::-1])
    
    face_helper.read_image(img)
    face_helper.get_face_landmarks_5(only_center_face=False, eye_dist_threshold=10)
    face_helper.align_warp_face(save_cropped_path="/home/user/app/")
    pilimg = Image.open("/home/user/app/_02.png")
    
    my_w = e4e_projection(pilimg, "test.pt", device).unsqueeze(0)
    if model == 'JoJo':
        with torch.no_grad():
            my_sample = generatorjojo(my_w, input_is_latent=True)  
    elif model == 'Disney':
        with torch.no_grad():
            my_sample = generatordisney(my_w, input_is_latent=True)
    else:
        with torch.no_grad():
            my_sample = generatorjinx(my_w, input_is_latent=True)
            
    
    npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
    imageio.imwrite('filename.jpeg', npimage)
    return 'filename.jpeg'
  
title = "JoJoGAN"
description = "Gradio Demo for JoJoGAN: One Shot Face Stylization. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.11641' target='_blank'>JoJoGAN: One Shot Face Stylization</a>| <a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center> <p style='text-align: center'>samples from repo: <img src='https://raw.githubusercontent.com/mchong6/JoJoGAN/main/teaser.jpg' alt='animation'/></p>"

examples=[['iu.jpeg','Jinx']]
gr.Interface(inference, [gr.inputs.Image(type="numpy"),gr.inputs.Dropdown(choices=['JoJo', 'Disney','Jinx'], type="value", default='JoJo', label="Model")], gr.outputs.Image(type="file"),title=title,description=description,article=article,enable_queue=True,allow_flagging=False,examples=examples).launch()