File size: 6,711 Bytes
2782137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy (yangtao9009@gmail.com)
'''
import os
import cv2
import glob
import time
import argparse
import numpy as np
from PIL import Image
import __init_paths
from face_detect.retinaface_detection import RetinaFaceDetection
from face_parse.face_parsing import FaceParse
from face_model.face_gan import FaceGAN
from sr_model.real_esrnet import RealESRNet
from align_faces import warp_and_crop_face, get_reference_facial_points

class FaceEnhancement(object):
    def __init__(self, base_dir='./', size=512, model=None, use_sr=True, sr_model=None, channel_multiplier=2, narrow=1, key=None, device='cuda'):
        self.facedetector = RetinaFaceDetection(base_dir, device)
        self.facegan = FaceGAN(base_dir, size, model, channel_multiplier, narrow, key, device=device)
        self.srmodel =  RealESRNet(base_dir, sr_model, device=device)
        self.faceparser = FaceParse(base_dir, device=device)
        self.use_sr = use_sr
        self.size = size
        self.threshold = 0.9

        # the mask for pasting restored faces back
        self.mask = np.zeros((512, 512), np.float32)
        cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA)
        self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
        self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)

        self.kernel = np.array((
                [0.0625, 0.125, 0.0625],
                [0.125, 0.25, 0.125],
                [0.0625, 0.125, 0.0625]), dtype="float32")

        # get the reference 5 landmarks position in the crop settings
        default_square = True
        inner_padding_factor = 0.25
        outer_padding = (0, 0)
        self.reference_5pts = get_reference_facial_points(
                (self.size, self.size), inner_padding_factor, outer_padding, default_square)

    def mask_postprocess(self, mask, thres=20):
        mask[:thres, :] = 0; mask[-thres:, :] = 0
        mask[:, :thres] = 0; mask[:, -thres:] = 0
        mask = cv2.GaussianBlur(mask, (101, 101), 11)
        mask = cv2.GaussianBlur(mask, (101, 101), 11)
        return mask.astype(np.float32)

    def process(self, img):
        if self.use_sr:
            img_sr = self.srmodel.process(img)
            if img_sr is not None:
                img = cv2.resize(img, img_sr.shape[:2][::-1])

        facebs, landms = self.facedetector.detect(img)
        
        orig_faces, enhanced_faces = [], []
        height, width = img.shape[:2]
        full_mask = np.zeros((height, width), dtype=np.float32)
        full_img = np.zeros(img.shape, dtype=np.uint8)

        for i, (faceb, facial5points) in enumerate(zip(facebs, landms)):
            if faceb[4]<self.threshold: continue
            fh, fw = (faceb[3]-faceb[1]), (faceb[2]-faceb[0])

            facial5points = np.reshape(facial5points, (2, 5))

            of, tfm_inv = warp_and_crop_face(img, facial5points, reference_pts=self.reference_5pts, crop_size=(self.size, self.size))
            
            # enhance the face
            ef = self.facegan.process(of)
            
            orig_faces.append(of)
            enhanced_faces.append(ef)
            
            #tmp_mask = self.mask
            tmp_mask = self.mask_postprocess(self.faceparser.process(ef)[0]/255.)
            tmp_mask = cv2.resize(tmp_mask, ef.shape[:2])
            tmp_mask = cv2.warpAffine(tmp_mask, tfm_inv, (width, height), flags=3)

            if min(fh, fw)<100: # gaussian filter for small faces
                ef = cv2.filter2D(ef, -1, self.kernel)
            
            tmp_img = cv2.warpAffine(ef, tfm_inv, (width, height), flags=3)

            mask = tmp_mask - full_mask
            full_mask[np.where(mask>0)] = tmp_mask[np.where(mask>0)]
            full_img[np.where(mask>0)] = tmp_img[np.where(mask>0)]

        full_mask = full_mask[:, :, np.newaxis]
        if self.use_sr and img_sr is not None:
            img = cv2.convertScaleAbs(img_sr*(1-full_mask) + full_img*full_mask)
        else:
            img = cv2.convertScaleAbs(img*(1-full_mask) + full_img*full_mask)

        return img, orig_faces, enhanced_faces
        

if __name__=='__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='GPEN-BFR-512', help='GPEN model')
    parser.add_argument('--key', type=str, default=None, help='key of GPEN model')
    parser.add_argument('--size', type=int, default=512, help='resolution of GPEN')
    parser.add_argument('--channel_multiplier', type=int, default=2, help='channel multiplier of GPEN')
    parser.add_argument('--narrow', type=float, default=1, help='channel narrow scale')
    parser.add_argument('--use_sr', action='store_true', help='use sr or not')
    parser.add_argument('--use_cuda', action='store_true', help='use cuda or not')
    parser.add_argument('--sr_model', type=str, default='rrdb_realesrnet_psnr', help='SR model')
    parser.add_argument('--sr_scale', type=int, default=2, help='SR scale')
    parser.add_argument('--indir', type=str, default='examples/imgs', help='input folder')
    parser.add_argument('--outdir', type=str, default='results/outs-BFR', help='output folder')
    args = parser.parse_args()

    #model = {'name':'GPEN-BFR-512', 'size':512, 'channel_multiplier':2, 'narrow':1}
    #model = {'name':'GPEN-BFR-256', 'size':256, 'channel_multiplier':1, 'narrow':0.5}
    
    os.makedirs(args.outdir, exist_ok=True)

    faceenhancer = FaceEnhancement(size=args.size, model=args.model, use_sr=args.use_sr, sr_model=args.sr_model, channel_multiplier=args.channel_multiplier, narrow=args.narrow, key=args.key, device='cuda' if args.use_cuda else 'cpu')

    files = sorted(glob.glob(os.path.join(args.indir, '*.*g')))
    for n, file in enumerate(files[:]):
        filename = os.path.basename(file)
        
        im = cv2.imread(file, cv2.IMREAD_COLOR) # BGR
        if not isinstance(im, np.ndarray): print(filename, 'error'); continue
        #im = cv2.resize(im, (0,0), fx=2, fy=2) # optional

        img, orig_faces, enhanced_faces = faceenhancer.process(im)
        
        im = cv2.resize(im, img.shape[:2][::-1])
        cv2.imwrite(os.path.join(args.outdir, '.'.join(filename.split('.')[:-1])+'_COMP.jpg'), np.hstack((im, img)))
        cv2.imwrite(os.path.join(args.outdir, '.'.join(filename.split('.')[:-1])+'_GPEN.jpg'), img)
        
        for m, (ef, of) in enumerate(zip(enhanced_faces, orig_faces)):
            of = cv2.resize(of, ef.shape[:2])
            cv2.imwrite(os.path.join(args.outdir, '.'.join(filename.split('.')[:-1])+'_face%02d'%m+'.jpg'), np.hstack((of, ef)))
        
        if n%10==0: print(n, filename)