Spaces:
Runtime error
Runtime error
File size: 26,394 Bytes
f7acea1 90e8102 f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 13fd34d f7acea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
import math
import os.path as osp
import torch
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.losses.gan_loss import r1_penalty
from basicsr.metrics import calculate_metric
from basicsr.models.base_model import BaseModel
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
from collections import OrderedDict
from torch.nn import functional as F
from torchvision.ops import roi_align
from tqdm import tqdm
@MODEL_REGISTRY.register()
class GFPGANModel(BaseModel):
"""The GFPGAN model for Towards real-world blind face restoratin with generative facial prior"""
def __init__(self, opt):
super(GFPGANModel, self).__init__(opt)
self.idx = 0 # it is used for saving data for check
# define network
self.net_g = build_network(opt['network_g'])
self.net_g = self.model_to_device(self.net_g)
self.print_network(self.net_g)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_g', 'params')
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
self.log_size = int(math.log(self.opt['network_g']['out_size'], 2))
if self.is_train:
self.init_training_settings()
def init_training_settings(self):
train_opt = self.opt['train']
# ----------- define net_d ----------- #
self.net_d = build_network(self.opt['network_d'])
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
# ----------- define net_g with Exponential Moving Average (EMA) ----------- #
# net_g_ema only used for testing on one GPU and saving. There is no need to wrap with DistributedDataParallel
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g.train()
self.net_d.train()
self.net_g_ema.eval()
# ----------- facial component networks ----------- #
if ('network_d_left_eye' in self.opt and 'network_d_right_eye' in self.opt and 'network_d_mouth' in self.opt):
self.use_facial_disc = True
else:
self.use_facial_disc = False
if self.use_facial_disc:
# left eye
self.net_d_left_eye = build_network(self.opt['network_d_left_eye'])
self.net_d_left_eye = self.model_to_device(self.net_d_left_eye)
self.print_network(self.net_d_left_eye)
load_path = self.opt['path'].get('pretrain_network_d_left_eye')
if load_path is not None:
self.load_network(self.net_d_left_eye, load_path, True, 'params')
# right eye
self.net_d_right_eye = build_network(self.opt['network_d_right_eye'])
self.net_d_right_eye = self.model_to_device(self.net_d_right_eye)
self.print_network(self.net_d_right_eye)
load_path = self.opt['path'].get('pretrain_network_d_right_eye')
if load_path is not None:
self.load_network(self.net_d_right_eye, load_path, True, 'params')
# mouth
self.net_d_mouth = build_network(self.opt['network_d_mouth'])
self.net_d_mouth = self.model_to_device(self.net_d_mouth)
self.print_network(self.net_d_mouth)
load_path = self.opt['path'].get('pretrain_network_d_mouth')
if load_path is not None:
self.load_network(self.net_d_mouth, load_path, True, 'params')
self.net_d_left_eye.train()
self.net_d_right_eye.train()
self.net_d_mouth.train()
# ----------- define facial component gan loss ----------- #
self.cri_component = build_loss(train_opt['gan_component_opt']).to(self.device)
# ----------- define losses ----------- #
# pixel loss
if train_opt.get('pixel_opt'):
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
else:
self.cri_pix = None
# perceptual loss
if train_opt.get('perceptual_opt'):
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
else:
self.cri_perceptual = None
# L1 loss is used in pyramid loss, component style loss and identity loss
self.cri_l1 = build_loss(train_opt['L1_opt']).to(self.device)
# gan loss (wgan)
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
# ----------- define identity loss ----------- #
if 'network_identity' in self.opt:
self.use_identity = True
else:
self.use_identity = False
if self.use_identity:
# define identity network
self.network_identity = build_network(self.opt['network_identity'])
self.network_identity = self.model_to_device(self.network_identity)
self.print_network(self.network_identity)
load_path = self.opt['path'].get('pretrain_network_identity')
if load_path is not None:
self.load_network(self.network_identity, load_path, True, None)
self.network_identity.eval()
for param in self.network_identity.parameters():
param.requires_grad = False
# regularization weights
self.r1_reg_weight = train_opt['r1_reg_weight'] # for discriminator
self.net_d_iters = train_opt.get('net_d_iters', 1)
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)
self.net_d_reg_every = train_opt['net_d_reg_every']
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
# ----------- optimizer g ----------- #
net_g_reg_ratio = 1
normal_params = []
for _, param in self.net_g.named_parameters():
normal_params.append(param)
optim_params_g = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
}]
optim_type = train_opt['optim_g'].pop('type')
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio)
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas)
self.optimizers.append(self.optimizer_g)
# ----------- optimizer d ----------- #
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1)
normal_params = []
for _, param in self.net_d.named_parameters():
normal_params.append(param)
optim_params_d = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_d']['lr']
}]
optim_type = train_opt['optim_d'].pop('type')
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio)
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas)
self.optimizers.append(self.optimizer_d)
# ----------- optimizers for facial component networks ----------- #
if self.use_facial_disc:
# setup optimizers for facial component discriminators
optim_type = train_opt['optim_component'].pop('type')
lr = train_opt['optim_component']['lr']
# left eye
self.optimizer_d_left_eye = self.get_optimizer(
optim_type, self.net_d_left_eye.parameters(), lr, betas=(0.9, 0.99))
self.optimizers.append(self.optimizer_d_left_eye)
# right eye
self.optimizer_d_right_eye = self.get_optimizer(
optim_type, self.net_d_right_eye.parameters(), lr, betas=(0.9, 0.99))
self.optimizers.append(self.optimizer_d_right_eye)
# mouth
self.optimizer_d_mouth = self.get_optimizer(
optim_type, self.net_d_mouth.parameters(), lr, betas=(0.9, 0.99))
self.optimizers.append(self.optimizer_d_mouth)
def feed_data(self, data):
self.lq = data['lq'].to(self.device)
if 'gt' in data:
self.gt = data['gt'].to(self.device)
if 'loc_left_eye' in data:
# get facial component locations, shape (batch, 4)
self.loc_left_eyes = data['loc_left_eye']
self.loc_right_eyes = data['loc_right_eye']
self.loc_mouths = data['loc_mouth']
# uncomment to check data
# import torchvision
# if self.opt['rank'] == 0:
# import os
# os.makedirs('tmp/gt', exist_ok=True)
# os.makedirs('tmp/lq', exist_ok=True)
# print(self.idx)
# torchvision.utils.save_image(
# self.gt, f'tmp/gt/gt_{self.idx}.png', nrow=4, padding=2, normalize=True, range=(-1, 1))
# torchvision.utils.save_image(
# self.lq, f'tmp/lq/lq{self.idx}.png', nrow=4, padding=2, normalize=True, range=(-1, 1))
# self.idx = self.idx + 1
def construct_img_pyramid(self):
"""Construct image pyramid for intermediate restoration loss"""
pyramid_gt = [self.gt]
down_img = self.gt
for _ in range(0, self.log_size - 3):
down_img = F.interpolate(down_img, scale_factor=0.5, mode='bilinear', align_corners=False)
pyramid_gt.insert(0, down_img)
return pyramid_gt
def get_roi_regions(self, eye_out_size=80, mouth_out_size=120):
face_ratio = int(self.opt['network_g']['out_size'] / 512)
eye_out_size *= face_ratio
mouth_out_size *= face_ratio
rois_eyes = []
rois_mouths = []
for b in range(self.loc_left_eyes.size(0)): # loop for batch size
# left eye and right eye
img_inds = self.loc_left_eyes.new_full((2, 1), b)
bbox = torch.stack([self.loc_left_eyes[b, :], self.loc_right_eyes[b, :]], dim=0) # shape: (2, 4)
rois = torch.cat([img_inds, bbox], dim=-1) # shape: (2, 5)
rois_eyes.append(rois)
# mouse
img_inds = self.loc_left_eyes.new_full((1, 1), b)
rois = torch.cat([img_inds, self.loc_mouths[b:b + 1, :]], dim=-1) # shape: (1, 5)
rois_mouths.append(rois)
rois_eyes = torch.cat(rois_eyes, 0).to(self.device)
rois_mouths = torch.cat(rois_mouths, 0).to(self.device)
# real images
all_eyes = roi_align(self.gt, boxes=rois_eyes, output_size=eye_out_size) * face_ratio
self.left_eyes_gt = all_eyes[0::2, :, :, :]
self.right_eyes_gt = all_eyes[1::2, :, :, :]
self.mouths_gt = roi_align(self.gt, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio
# output
all_eyes = roi_align(self.output, boxes=rois_eyes, output_size=eye_out_size) * face_ratio
self.left_eyes = all_eyes[0::2, :, :, :]
self.right_eyes = all_eyes[1::2, :, :, :]
self.mouths = roi_align(self.output, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio
def _gram_mat(self, x):
"""Calculate Gram matrix.
Args:
x (torch.Tensor): Tensor with shape of (n, c, h, w).
Returns:
torch.Tensor: Gram matrix.
"""
n, c, h, w = x.size()
features = x.view(n, c, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (c * h * w)
return gram
def gray_resize_for_identity(self, out, size=128):
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
out_gray = out_gray.unsqueeze(1)
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
return out_gray
def optimize_parameters(self, current_iter):
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
# do not update facial component net_d
if self.use_facial_disc:
for p in self.net_d_left_eye.parameters():
p.requires_grad = False
for p in self.net_d_right_eye.parameters():
p.requires_grad = False
for p in self.net_d_mouth.parameters():
p.requires_grad = False
# image pyramid loss weight
if current_iter < self.opt['train'].get('remove_pyramid_loss', float('inf')):
pyramid_loss_weight = self.opt['train'].get('pyramid_loss_weight', 1)
else:
pyramid_loss_weight = 1e-12 # very small loss
if pyramid_loss_weight > 0:
self.output, out_rgbs = self.net_g(self.lq, return_rgb=True)
pyramid_gt = self.construct_img_pyramid()
else:
self.output, out_rgbs = self.net_g(self.lq, return_rgb=False)
# get roi-align regions
if self.use_facial_disc:
self.get_roi_regions(eye_out_size=80, mouth_out_size=120)
l_g_total = 0
loss_dict = OrderedDict()
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
# pixel loss
if self.cri_pix:
l_g_pix = self.cri_pix(self.output, self.gt)
l_g_total += l_g_pix
loss_dict['l_g_pix'] = l_g_pix
# image pyramid loss
if pyramid_loss_weight > 0:
for i in range(0, self.log_size - 2):
l_pyramid = self.cri_l1(out_rgbs[i], pyramid_gt[i]) * pyramid_loss_weight
l_g_total += l_pyramid
loss_dict[f'l_p_{2**(i+3)}'] = l_pyramid
# perceptual loss
if self.cri_perceptual:
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt)
if l_g_percep is not None:
l_g_total += l_g_percep
loss_dict['l_g_percep'] = l_g_percep
if l_g_style is not None:
l_g_total += l_g_style
loss_dict['l_g_style'] = l_g_style
# gan loss
fake_g_pred = self.net_d(self.output)
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan'] = l_g_gan
# facial component loss
if self.use_facial_disc:
# left eye
fake_left_eye, fake_left_eye_feats = self.net_d_left_eye(self.left_eyes, return_feats=True)
l_g_gan = self.cri_component(fake_left_eye, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan_left_eye'] = l_g_gan
# right eye
fake_right_eye, fake_right_eye_feats = self.net_d_right_eye(self.right_eyes, return_feats=True)
l_g_gan = self.cri_component(fake_right_eye, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan_right_eye'] = l_g_gan
# mouth
fake_mouth, fake_mouth_feats = self.net_d_mouth(self.mouths, return_feats=True)
l_g_gan = self.cri_component(fake_mouth, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan_mouth'] = l_g_gan
if self.opt['train'].get('comp_style_weight', 0) > 0:
# get gt feat
_, real_left_eye_feats = self.net_d_left_eye(self.left_eyes_gt, return_feats=True)
_, real_right_eye_feats = self.net_d_right_eye(self.right_eyes_gt, return_feats=True)
_, real_mouth_feats = self.net_d_mouth(self.mouths_gt, return_feats=True)
def _comp_style(feat, feat_gt, criterion):
return criterion(self._gram_mat(feat[0]), self._gram_mat(
feat_gt[0].detach())) * 0.5 + criterion(
self._gram_mat(feat[1]), self._gram_mat(feat_gt[1].detach()))
# facial component style loss
comp_style_loss = 0
comp_style_loss += _comp_style(fake_left_eye_feats, real_left_eye_feats, self.cri_l1)
comp_style_loss += _comp_style(fake_right_eye_feats, real_right_eye_feats, self.cri_l1)
comp_style_loss += _comp_style(fake_mouth_feats, real_mouth_feats, self.cri_l1)
comp_style_loss = comp_style_loss * self.opt['train']['comp_style_weight']
l_g_total += comp_style_loss
loss_dict['l_g_comp_style_loss'] = comp_style_loss
# identity loss
if self.use_identity:
identity_weight = self.opt['train']['identity_weight']
# get gray images and resize
out_gray = self.gray_resize_for_identity(self.output)
gt_gray = self.gray_resize_for_identity(self.gt)
identity_gt = self.network_identity(gt_gray).detach()
identity_out = self.network_identity(out_gray)
l_identity = self.cri_l1(identity_out, identity_gt) * identity_weight
l_g_total += l_identity
loss_dict['l_identity'] = l_identity
l_g_total.backward()
self.optimizer_g.step()
# EMA
self.model_ema(decay=0.5**(32 / (10 * 1000)))
# ----------- optimize net_d ----------- #
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
if self.use_facial_disc:
for p in self.net_d_left_eye.parameters():
p.requires_grad = True
for p in self.net_d_right_eye.parameters():
p.requires_grad = True
for p in self.net_d_mouth.parameters():
p.requires_grad = True
self.optimizer_d_left_eye.zero_grad()
self.optimizer_d_right_eye.zero_grad()
self.optimizer_d_mouth.zero_grad()
fake_d_pred = self.net_d(self.output.detach())
real_d_pred = self.net_d(self.gt)
l_d = self.cri_gan(real_d_pred, True, is_disc=True) + self.cri_gan(fake_d_pred, False, is_disc=True)
loss_dict['l_d'] = l_d
# In WGAN, real_score should be positive and fake_score should be negative
loss_dict['real_score'] = real_d_pred.detach().mean()
loss_dict['fake_score'] = fake_d_pred.detach().mean()
l_d.backward()
# regularization loss
if current_iter % self.net_d_reg_every == 0:
self.gt.requires_grad = True
real_pred = self.net_d(self.gt)
l_d_r1 = r1_penalty(real_pred, self.gt)
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0])
loss_dict['l_d_r1'] = l_d_r1.detach().mean()
l_d_r1.backward()
self.optimizer_d.step()
# optimize facial component discriminators
if self.use_facial_disc:
# left eye
fake_d_pred, _ = self.net_d_left_eye(self.left_eyes.detach())
real_d_pred, _ = self.net_d_left_eye(self.left_eyes_gt)
l_d_left_eye = self.cri_component(
real_d_pred, True, is_disc=True) + self.cri_gan(
fake_d_pred, False, is_disc=True)
loss_dict['l_d_left_eye'] = l_d_left_eye
l_d_left_eye.backward()
# right eye
fake_d_pred, _ = self.net_d_right_eye(self.right_eyes.detach())
real_d_pred, _ = self.net_d_right_eye(self.right_eyes_gt)
l_d_right_eye = self.cri_component(
real_d_pred, True, is_disc=True) + self.cri_gan(
fake_d_pred, False, is_disc=True)
loss_dict['l_d_right_eye'] = l_d_right_eye
l_d_right_eye.backward()
# mouth
fake_d_pred, _ = self.net_d_mouth(self.mouths.detach())
real_d_pred, _ = self.net_d_mouth(self.mouths_gt)
l_d_mouth = self.cri_component(
real_d_pred, True, is_disc=True) + self.cri_gan(
fake_d_pred, False, is_disc=True)
loss_dict['l_d_mouth'] = l_d_mouth
l_d_mouth.backward()
self.optimizer_d_left_eye.step()
self.optimizer_d_right_eye.step()
self.optimizer_d_mouth.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
def test(self):
with torch.no_grad():
if hasattr(self, 'net_g_ema'):
self.net_g_ema.eval()
self.output, _ = self.net_g_ema(self.lq)
else:
logger = get_root_logger()
logger.warning('Do not have self.net_g_ema, use self.net_g.')
self.net_g.eval()
self.output, _ = self.net_g(self.lq)
self.net_g.train()
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
if self.opt['rank'] == 0:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
dataset_name = dataloader.dataset.opt['name']
with_metrics = self.opt['val'].get('metrics') is not None
use_pbar = self.opt['val'].get('pbar', False)
if with_metrics:
if not hasattr(self, 'metric_results'): # only execute in the first run
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
# initialize the best metric results for each dataset_name (supporting multiple validation datasets)
self._initialize_best_metric_results(dataset_name)
# zero self.metric_results
self.metric_results = {metric: 0 for metric in self.metric_results}
metric_data = dict()
if use_pbar:
pbar = tqdm(total=len(dataloader), unit='image')
for idx, val_data in enumerate(dataloader):
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
self.feed_data(val_data)
self.test()
sr_img = tensor2img(self.output.detach().cpu(), min_max=(-1, 1))
metric_data['img'] = sr_img
if hasattr(self, 'gt'):
gt_img = tensor2img(self.gt.detach().cpu(), min_max=(-1, 1))
metric_data['img2'] = gt_img
del self.gt
# tentative for out of GPU memory
del self.lq
del self.output
torch.cuda.empty_cache()
if save_img:
if self.opt['is_train']:
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
f'{img_name}_{current_iter}.png')
else:
if self.opt['val']['suffix']:
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
f'{img_name}_{self.opt["val"]["suffix"]}.png')
else:
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
f'{img_name}_{self.opt["name"]}.png')
imwrite(sr_img, save_img_path)
if with_metrics:
# calculate metrics
for name, opt_ in self.opt['val']['metrics'].items():
self.metric_results[name] += calculate_metric(metric_data, opt_)
if use_pbar:
pbar.update(1)
pbar.set_description(f'Test {img_name}')
if use_pbar:
pbar.close()
if with_metrics:
for metric in self.metric_results.keys():
self.metric_results[metric] /= (idx + 1)
# update the best metric result
self._update_best_metric_result(dataset_name, metric, self.metric_results[metric], current_iter)
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
log_str = f'Validation {dataset_name}\n'
for metric, value in self.metric_results.items():
log_str += f'\t # {metric}: {value:.4f}'
if hasattr(self, 'best_metric_results'):
log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
log_str += '\n'
logger = get_root_logger()
logger.info(log_str)
if tb_logger:
for metric, value in self.metric_results.items():
tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)
def save(self, epoch, current_iter):
# save net_g and net_d
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
self.save_network(self.net_d, 'net_d', current_iter)
# save component discriminators
if self.use_facial_disc:
self.save_network(self.net_d_left_eye, 'net_d_left_eye', current_iter)
self.save_network(self.net_d_right_eye, 'net_d_right_eye', current_iter)
self.save_network(self.net_d_mouth, 'net_d_mouth', current_iter)
# save training state
self.save_training_state(epoch, current_iter)
|