File size: 26,394 Bytes
f7acea1
 
 
 
 
90e8102
f7acea1
 
 
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
 
 
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
 
 
 
 
13fd34d
f7acea1
 
 
 
 
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
 
 
 
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
13fd34d
f7acea1
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fd34d
 
f7acea1
13fd34d
 
 
 
 
 
 
 
 
 
f7acea1
 
 
 
 
 
13fd34d
 
 
 
 
f7acea1
13fd34d
f7acea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fd34d
 
 
 
 
f7acea1
 
 
 
13fd34d
 
f7acea1
 
 
 
 
 
13fd34d
 
 
 
 
 
f7acea1
 
 
 
13fd34d
f7acea1
 
13fd34d
f7acea1
 
 
 
 
 
 
13fd34d
f7acea1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import math
import os.path as osp
import torch
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.losses.gan_loss import r1_penalty
from basicsr.metrics import calculate_metric
from basicsr.models.base_model import BaseModel
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
from collections import OrderedDict
from torch.nn import functional as F
from torchvision.ops import roi_align
from tqdm import tqdm


@MODEL_REGISTRY.register()
class GFPGANModel(BaseModel):
    """The GFPGAN model for Towards real-world blind face restoratin with generative facial prior"""

    def __init__(self, opt):
        super(GFPGANModel, self).__init__(opt)
        self.idx = 0  # it is used for saving data for check

        # define network
        self.net_g = build_network(opt['network_g'])
        self.net_g = self.model_to_device(self.net_g)
        self.print_network(self.net_g)

        # load pretrained model
        load_path = self.opt['path'].get('pretrain_network_g', None)
        if load_path is not None:
            param_key = self.opt['path'].get('param_key_g', 'params')
            self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)

        self.log_size = int(math.log(self.opt['network_g']['out_size'], 2))

        if self.is_train:
            self.init_training_settings()

    def init_training_settings(self):
        train_opt = self.opt['train']

        # ----------- define net_d ----------- #
        self.net_d = build_network(self.opt['network_d'])
        self.net_d = self.model_to_device(self.net_d)
        self.print_network(self.net_d)
        # load pretrained model
        load_path = self.opt['path'].get('pretrain_network_d', None)
        if load_path is not None:
            self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))

        # ----------- define net_g with Exponential Moving Average (EMA) ----------- #
        # net_g_ema only used for testing on one GPU and saving. There is no need to wrap with DistributedDataParallel
        self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
        # load pretrained model
        load_path = self.opt['path'].get('pretrain_network_g', None)
        if load_path is not None:
            self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
        else:
            self.model_ema(0)  # copy net_g weight

        self.net_g.train()
        self.net_d.train()
        self.net_g_ema.eval()

        # ----------- facial component networks ----------- #
        if ('network_d_left_eye' in self.opt and 'network_d_right_eye' in self.opt and 'network_d_mouth' in self.opt):
            self.use_facial_disc = True
        else:
            self.use_facial_disc = False

        if self.use_facial_disc:
            # left eye
            self.net_d_left_eye = build_network(self.opt['network_d_left_eye'])
            self.net_d_left_eye = self.model_to_device(self.net_d_left_eye)
            self.print_network(self.net_d_left_eye)
            load_path = self.opt['path'].get('pretrain_network_d_left_eye')
            if load_path is not None:
                self.load_network(self.net_d_left_eye, load_path, True, 'params')
            # right eye
            self.net_d_right_eye = build_network(self.opt['network_d_right_eye'])
            self.net_d_right_eye = self.model_to_device(self.net_d_right_eye)
            self.print_network(self.net_d_right_eye)
            load_path = self.opt['path'].get('pretrain_network_d_right_eye')
            if load_path is not None:
                self.load_network(self.net_d_right_eye, load_path, True, 'params')
            # mouth
            self.net_d_mouth = build_network(self.opt['network_d_mouth'])
            self.net_d_mouth = self.model_to_device(self.net_d_mouth)
            self.print_network(self.net_d_mouth)
            load_path = self.opt['path'].get('pretrain_network_d_mouth')
            if load_path is not None:
                self.load_network(self.net_d_mouth, load_path, True, 'params')

            self.net_d_left_eye.train()
            self.net_d_right_eye.train()
            self.net_d_mouth.train()

            # ----------- define facial component gan loss ----------- #
            self.cri_component = build_loss(train_opt['gan_component_opt']).to(self.device)

        # ----------- define losses ----------- #
        # pixel loss
        if train_opt.get('pixel_opt'):
            self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
        else:
            self.cri_pix = None

        # perceptual loss
        if train_opt.get('perceptual_opt'):
            self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
        else:
            self.cri_perceptual = None

        # L1 loss is used in pyramid loss, component style loss and identity loss
        self.cri_l1 = build_loss(train_opt['L1_opt']).to(self.device)

        # gan loss (wgan)
        self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)

        # ----------- define identity loss ----------- #
        if 'network_identity' in self.opt:
            self.use_identity = True
        else:
            self.use_identity = False

        if self.use_identity:
            # define identity network
            self.network_identity = build_network(self.opt['network_identity'])
            self.network_identity = self.model_to_device(self.network_identity)
            self.print_network(self.network_identity)
            load_path = self.opt['path'].get('pretrain_network_identity')
            if load_path is not None:
                self.load_network(self.network_identity, load_path, True, None)
            self.network_identity.eval()
            for param in self.network_identity.parameters():
                param.requires_grad = False

        # regularization weights
        self.r1_reg_weight = train_opt['r1_reg_weight']  # for discriminator
        self.net_d_iters = train_opt.get('net_d_iters', 1)
        self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)
        self.net_d_reg_every = train_opt['net_d_reg_every']

        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()

    def setup_optimizers(self):
        train_opt = self.opt['train']

        # ----------- optimizer g ----------- #
        net_g_reg_ratio = 1
        normal_params = []
        for _, param in self.net_g.named_parameters():
            normal_params.append(param)
        optim_params_g = [{  # add normal params first
            'params': normal_params,
            'lr': train_opt['optim_g']['lr']
        }]
        optim_type = train_opt['optim_g'].pop('type')
        lr = train_opt['optim_g']['lr'] * net_g_reg_ratio
        betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio)
        self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas)
        self.optimizers.append(self.optimizer_g)

        # ----------- optimizer d ----------- #
        net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1)
        normal_params = []
        for _, param in self.net_d.named_parameters():
            normal_params.append(param)
        optim_params_d = [{  # add normal params first
            'params': normal_params,
            'lr': train_opt['optim_d']['lr']
        }]
        optim_type = train_opt['optim_d'].pop('type')
        lr = train_opt['optim_d']['lr'] * net_d_reg_ratio
        betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio)
        self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas)
        self.optimizers.append(self.optimizer_d)

        # ----------- optimizers for facial component networks ----------- #
        if self.use_facial_disc:
            # setup optimizers for facial component discriminators
            optim_type = train_opt['optim_component'].pop('type')
            lr = train_opt['optim_component']['lr']
            # left eye
            self.optimizer_d_left_eye = self.get_optimizer(
                optim_type, self.net_d_left_eye.parameters(), lr, betas=(0.9, 0.99))
            self.optimizers.append(self.optimizer_d_left_eye)
            # right eye
            self.optimizer_d_right_eye = self.get_optimizer(
                optim_type, self.net_d_right_eye.parameters(), lr, betas=(0.9, 0.99))
            self.optimizers.append(self.optimizer_d_right_eye)
            # mouth
            self.optimizer_d_mouth = self.get_optimizer(
                optim_type, self.net_d_mouth.parameters(), lr, betas=(0.9, 0.99))
            self.optimizers.append(self.optimizer_d_mouth)

    def feed_data(self, data):
        self.lq = data['lq'].to(self.device)
        if 'gt' in data:
            self.gt = data['gt'].to(self.device)

        if 'loc_left_eye' in data:
            # get facial component locations, shape (batch, 4)
            self.loc_left_eyes = data['loc_left_eye']
            self.loc_right_eyes = data['loc_right_eye']
            self.loc_mouths = data['loc_mouth']

            # uncomment to check data
            # import torchvision
            # if self.opt['rank'] == 0:
            #     import os
            #     os.makedirs('tmp/gt', exist_ok=True)
            #     os.makedirs('tmp/lq', exist_ok=True)
            #     print(self.idx)
            #     torchvision.utils.save_image(
            #         self.gt, f'tmp/gt/gt_{self.idx}.png', nrow=4, padding=2, normalize=True, range=(-1, 1))
            #     torchvision.utils.save_image(
            #         self.lq, f'tmp/lq/lq{self.idx}.png', nrow=4, padding=2, normalize=True, range=(-1, 1))
            #     self.idx = self.idx + 1

    def construct_img_pyramid(self):
        """Construct image pyramid for intermediate restoration loss"""
        pyramid_gt = [self.gt]
        down_img = self.gt
        for _ in range(0, self.log_size - 3):
            down_img = F.interpolate(down_img, scale_factor=0.5, mode='bilinear', align_corners=False)
            pyramid_gt.insert(0, down_img)
        return pyramid_gt

    def get_roi_regions(self, eye_out_size=80, mouth_out_size=120):
        face_ratio = int(self.opt['network_g']['out_size'] / 512)
        eye_out_size *= face_ratio
        mouth_out_size *= face_ratio

        rois_eyes = []
        rois_mouths = []
        for b in range(self.loc_left_eyes.size(0)):  # loop for batch size
            # left eye and right eye
            img_inds = self.loc_left_eyes.new_full((2, 1), b)
            bbox = torch.stack([self.loc_left_eyes[b, :], self.loc_right_eyes[b, :]], dim=0)  # shape: (2, 4)
            rois = torch.cat([img_inds, bbox], dim=-1)  # shape: (2, 5)
            rois_eyes.append(rois)
            # mouse
            img_inds = self.loc_left_eyes.new_full((1, 1), b)
            rois = torch.cat([img_inds, self.loc_mouths[b:b + 1, :]], dim=-1)  # shape: (1, 5)
            rois_mouths.append(rois)

        rois_eyes = torch.cat(rois_eyes, 0).to(self.device)
        rois_mouths = torch.cat(rois_mouths, 0).to(self.device)

        # real images
        all_eyes = roi_align(self.gt, boxes=rois_eyes, output_size=eye_out_size) * face_ratio
        self.left_eyes_gt = all_eyes[0::2, :, :, :]
        self.right_eyes_gt = all_eyes[1::2, :, :, :]
        self.mouths_gt = roi_align(self.gt, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio
        # output
        all_eyes = roi_align(self.output, boxes=rois_eyes, output_size=eye_out_size) * face_ratio
        self.left_eyes = all_eyes[0::2, :, :, :]
        self.right_eyes = all_eyes[1::2, :, :, :]
        self.mouths = roi_align(self.output, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio

    def _gram_mat(self, x):
        """Calculate Gram matrix.

        Args:
            x (torch.Tensor): Tensor with shape of (n, c, h, w).

        Returns:
            torch.Tensor: Gram matrix.
        """
        n, c, h, w = x.size()
        features = x.view(n, c, w * h)
        features_t = features.transpose(1, 2)
        gram = features.bmm(features_t) / (c * h * w)
        return gram

    def gray_resize_for_identity(self, out, size=128):
        out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
        out_gray = out_gray.unsqueeze(1)
        out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
        return out_gray

    def optimize_parameters(self, current_iter):
        # optimize net_g
        for p in self.net_d.parameters():
            p.requires_grad = False
        self.optimizer_g.zero_grad()

        # do not update facial component net_d
        if self.use_facial_disc:
            for p in self.net_d_left_eye.parameters():
                p.requires_grad = False
            for p in self.net_d_right_eye.parameters():
                p.requires_grad = False
            for p in self.net_d_mouth.parameters():
                p.requires_grad = False

        # image pyramid loss weight
        if current_iter < self.opt['train'].get('remove_pyramid_loss', float('inf')):
            pyramid_loss_weight = self.opt['train'].get('pyramid_loss_weight', 1)
        else:
            pyramid_loss_weight = 1e-12  # very small loss
        if pyramid_loss_weight > 0:
            self.output, out_rgbs = self.net_g(self.lq, return_rgb=True)
            pyramid_gt = self.construct_img_pyramid()
        else:
            self.output, out_rgbs = self.net_g(self.lq, return_rgb=False)

        # get roi-align regions
        if self.use_facial_disc:
            self.get_roi_regions(eye_out_size=80, mouth_out_size=120)

        l_g_total = 0
        loss_dict = OrderedDict()
        if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
            # pixel loss
            if self.cri_pix:
                l_g_pix = self.cri_pix(self.output, self.gt)
                l_g_total += l_g_pix
                loss_dict['l_g_pix'] = l_g_pix

            # image pyramid loss
            if pyramid_loss_weight > 0:
                for i in range(0, self.log_size - 2):
                    l_pyramid = self.cri_l1(out_rgbs[i], pyramid_gt[i]) * pyramid_loss_weight
                    l_g_total += l_pyramid
                    loss_dict[f'l_p_{2**(i+3)}'] = l_pyramid

            # perceptual loss
            if self.cri_perceptual:
                l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt)
                if l_g_percep is not None:
                    l_g_total += l_g_percep
                    loss_dict['l_g_percep'] = l_g_percep
                if l_g_style is not None:
                    l_g_total += l_g_style
                    loss_dict['l_g_style'] = l_g_style

            # gan loss
            fake_g_pred = self.net_d(self.output)
            l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
            l_g_total += l_g_gan
            loss_dict['l_g_gan'] = l_g_gan

            # facial component loss
            if self.use_facial_disc:
                # left eye
                fake_left_eye, fake_left_eye_feats = self.net_d_left_eye(self.left_eyes, return_feats=True)
                l_g_gan = self.cri_component(fake_left_eye, True, is_disc=False)
                l_g_total += l_g_gan
                loss_dict['l_g_gan_left_eye'] = l_g_gan
                # right eye
                fake_right_eye, fake_right_eye_feats = self.net_d_right_eye(self.right_eyes, return_feats=True)
                l_g_gan = self.cri_component(fake_right_eye, True, is_disc=False)
                l_g_total += l_g_gan
                loss_dict['l_g_gan_right_eye'] = l_g_gan
                # mouth
                fake_mouth, fake_mouth_feats = self.net_d_mouth(self.mouths, return_feats=True)
                l_g_gan = self.cri_component(fake_mouth, True, is_disc=False)
                l_g_total += l_g_gan
                loss_dict['l_g_gan_mouth'] = l_g_gan

                if self.opt['train'].get('comp_style_weight', 0) > 0:
                    # get gt feat
                    _, real_left_eye_feats = self.net_d_left_eye(self.left_eyes_gt, return_feats=True)
                    _, real_right_eye_feats = self.net_d_right_eye(self.right_eyes_gt, return_feats=True)
                    _, real_mouth_feats = self.net_d_mouth(self.mouths_gt, return_feats=True)

                    def _comp_style(feat, feat_gt, criterion):
                        return criterion(self._gram_mat(feat[0]), self._gram_mat(
                            feat_gt[0].detach())) * 0.5 + criterion(
                                self._gram_mat(feat[1]), self._gram_mat(feat_gt[1].detach()))

                    # facial component style loss
                    comp_style_loss = 0
                    comp_style_loss += _comp_style(fake_left_eye_feats, real_left_eye_feats, self.cri_l1)
                    comp_style_loss += _comp_style(fake_right_eye_feats, real_right_eye_feats, self.cri_l1)
                    comp_style_loss += _comp_style(fake_mouth_feats, real_mouth_feats, self.cri_l1)
                    comp_style_loss = comp_style_loss * self.opt['train']['comp_style_weight']
                    l_g_total += comp_style_loss
                    loss_dict['l_g_comp_style_loss'] = comp_style_loss

            # identity loss
            if self.use_identity:
                identity_weight = self.opt['train']['identity_weight']
                # get gray images and resize
                out_gray = self.gray_resize_for_identity(self.output)
                gt_gray = self.gray_resize_for_identity(self.gt)

                identity_gt = self.network_identity(gt_gray).detach()
                identity_out = self.network_identity(out_gray)
                l_identity = self.cri_l1(identity_out, identity_gt) * identity_weight
                l_g_total += l_identity
                loss_dict['l_identity'] = l_identity

            l_g_total.backward()
            self.optimizer_g.step()

        # EMA
        self.model_ema(decay=0.5**(32 / (10 * 1000)))

        # ----------- optimize net_d ----------- #
        for p in self.net_d.parameters():
            p.requires_grad = True
        self.optimizer_d.zero_grad()
        if self.use_facial_disc:
            for p in self.net_d_left_eye.parameters():
                p.requires_grad = True
            for p in self.net_d_right_eye.parameters():
                p.requires_grad = True
            for p in self.net_d_mouth.parameters():
                p.requires_grad = True
            self.optimizer_d_left_eye.zero_grad()
            self.optimizer_d_right_eye.zero_grad()
            self.optimizer_d_mouth.zero_grad()

        fake_d_pred = self.net_d(self.output.detach())
        real_d_pred = self.net_d(self.gt)
        l_d = self.cri_gan(real_d_pred, True, is_disc=True) + self.cri_gan(fake_d_pred, False, is_disc=True)
        loss_dict['l_d'] = l_d
        # In WGAN, real_score should be positive and fake_score should be negative
        loss_dict['real_score'] = real_d_pred.detach().mean()
        loss_dict['fake_score'] = fake_d_pred.detach().mean()
        l_d.backward()

        # regularization loss
        if current_iter % self.net_d_reg_every == 0:
            self.gt.requires_grad = True
            real_pred = self.net_d(self.gt)
            l_d_r1 = r1_penalty(real_pred, self.gt)
            l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0])
            loss_dict['l_d_r1'] = l_d_r1.detach().mean()
            l_d_r1.backward()

        self.optimizer_d.step()

        # optimize facial component discriminators
        if self.use_facial_disc:
            # left eye
            fake_d_pred, _ = self.net_d_left_eye(self.left_eyes.detach())
            real_d_pred, _ = self.net_d_left_eye(self.left_eyes_gt)
            l_d_left_eye = self.cri_component(
                real_d_pred, True, is_disc=True) + self.cri_gan(
                    fake_d_pred, False, is_disc=True)
            loss_dict['l_d_left_eye'] = l_d_left_eye
            l_d_left_eye.backward()
            # right eye
            fake_d_pred, _ = self.net_d_right_eye(self.right_eyes.detach())
            real_d_pred, _ = self.net_d_right_eye(self.right_eyes_gt)
            l_d_right_eye = self.cri_component(
                real_d_pred, True, is_disc=True) + self.cri_gan(
                    fake_d_pred, False, is_disc=True)
            loss_dict['l_d_right_eye'] = l_d_right_eye
            l_d_right_eye.backward()
            # mouth
            fake_d_pred, _ = self.net_d_mouth(self.mouths.detach())
            real_d_pred, _ = self.net_d_mouth(self.mouths_gt)
            l_d_mouth = self.cri_component(
                real_d_pred, True, is_disc=True) + self.cri_gan(
                    fake_d_pred, False, is_disc=True)
            loss_dict['l_d_mouth'] = l_d_mouth
            l_d_mouth.backward()

            self.optimizer_d_left_eye.step()
            self.optimizer_d_right_eye.step()
            self.optimizer_d_mouth.step()

        self.log_dict = self.reduce_loss_dict(loss_dict)

    def test(self):
        with torch.no_grad():
            if hasattr(self, 'net_g_ema'):
                self.net_g_ema.eval()
                self.output, _ = self.net_g_ema(self.lq)
            else:
                logger = get_root_logger()
                logger.warning('Do not have self.net_g_ema, use self.net_g.')
                self.net_g.eval()
                self.output, _ = self.net_g(self.lq)
                self.net_g.train()

    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        if self.opt['rank'] == 0:
            self.nondist_validation(dataloader, current_iter, tb_logger, save_img)

    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset_name = dataloader.dataset.opt['name']
        with_metrics = self.opt['val'].get('metrics') is not None
        use_pbar = self.opt['val'].get('pbar', False)

        if with_metrics:
            if not hasattr(self, 'metric_results'):  # only execute in the first run
                self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
            # initialize the best metric results for each dataset_name (supporting multiple validation datasets)
            self._initialize_best_metric_results(dataset_name)
            # zero self.metric_results
            self.metric_results = {metric: 0 for metric in self.metric_results}

        metric_data = dict()
        if use_pbar:
            pbar = tqdm(total=len(dataloader), unit='image')

        for idx, val_data in enumerate(dataloader):
            img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
            self.feed_data(val_data)
            self.test()

            sr_img = tensor2img(self.output.detach().cpu(), min_max=(-1, 1))
            metric_data['img'] = sr_img
            if hasattr(self, 'gt'):
                gt_img = tensor2img(self.gt.detach().cpu(), min_max=(-1, 1))
                metric_data['img2'] = gt_img
                del self.gt

            # tentative for out of GPU memory
            del self.lq
            del self.output
            torch.cuda.empty_cache()

            if save_img:
                if self.opt['is_train']:
                    save_img_path = osp.join(self.opt['path']['visualization'], img_name,
                                             f'{img_name}_{current_iter}.png')
                else:
                    if self.opt['val']['suffix']:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["val"]["suffix"]}.png')
                    else:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["name"]}.png')
                imwrite(sr_img, save_img_path)

            if with_metrics:
                # calculate metrics
                for name, opt_ in self.opt['val']['metrics'].items():
                    self.metric_results[name] += calculate_metric(metric_data, opt_)
            if use_pbar:
                pbar.update(1)
                pbar.set_description(f'Test {img_name}')
        if use_pbar:
            pbar.close()

        if with_metrics:
            for metric in self.metric_results.keys():
                self.metric_results[metric] /= (idx + 1)
                # update the best metric result
                self._update_best_metric_result(dataset_name, metric, self.metric_results[metric], current_iter)

            self._log_validation_metric_values(current_iter, dataset_name, tb_logger)

    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        log_str = f'Validation {dataset_name}\n'
        for metric, value in self.metric_results.items():
            log_str += f'\t # {metric}: {value:.4f}'
            if hasattr(self, 'best_metric_results'):
                log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
                            f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
            log_str += '\n'

        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric, value in self.metric_results.items():
                tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)

    def save(self, epoch, current_iter):
        # save net_g and net_d
        self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
        self.save_network(self.net_d, 'net_d', current_iter)
        # save component discriminators
        if self.use_facial_disc:
            self.save_network(self.net_d_left_eye, 'net_d_left_eye', current_iter)
            self.save_network(self.net_d_right_eye, 'net_d_right_eye', current_iter)
            self.save_network(self.net_d_mouth, 'net_d_mouth', current_iter)
        # save training state
        self.save_training_state(epoch, current_iter)