Spaces:
Runtime error
Runtime error
File size: 11,491 Bytes
159f437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import numpy as np
import json
import math
import torch
from torch import nn
from torch.autograd.function import Function
from typing import Dict, List, Optional, Tuple, Union
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import ShapeSpec
from detectron2.layers import batched_nms
from detectron2.structures import Boxes, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.modeling.box_regression import Box2BoxTransform
from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference
from detectron2.modeling.roi_heads.roi_heads import ROI_HEADS_REGISTRY, StandardROIHeads
from detectron2.modeling.roi_heads.cascade_rcnn import CascadeROIHeads, _ScaleGradient
from detectron2.modeling.roi_heads.box_head import build_box_head
from .detic_fast_rcnn import DeticFastRCNNOutputLayers
from ..debug import debug_second_stage
from torch.cuda.amp import autocast
@ROI_HEADS_REGISTRY.register()
class DeticCascadeROIHeads(CascadeROIHeads):
@configurable
def __init__(
self,
*,
mult_proposal_score: bool = False,
with_image_labels: bool = False,
add_image_box: bool = False,
image_box_size: float = 1.0,
ws_num_props: int = 512,
add_feature_to_prop: bool = False,
mask_weight: float = 1.0,
one_class_per_proposal: bool = False,
**kwargs,
):
super().__init__(**kwargs)
self.mult_proposal_score = mult_proposal_score
self.with_image_labels = with_image_labels
self.add_image_box = add_image_box
self.image_box_size = image_box_size
self.ws_num_props = ws_num_props
self.add_feature_to_prop = add_feature_to_prop
self.mask_weight = mask_weight
self.one_class_per_proposal = one_class_per_proposal
@classmethod
def from_config(cls, cfg, input_shape):
ret = super().from_config(cfg, input_shape)
ret.update({
'mult_proposal_score': cfg.MODEL.ROI_BOX_HEAD.MULT_PROPOSAL_SCORE,
'with_image_labels': cfg.WITH_IMAGE_LABELS,
'add_image_box': cfg.MODEL.ROI_BOX_HEAD.ADD_IMAGE_BOX,
'image_box_size': cfg.MODEL.ROI_BOX_HEAD.IMAGE_BOX_SIZE,
'ws_num_props': cfg.MODEL.ROI_BOX_HEAD.WS_NUM_PROPS,
'add_feature_to_prop': cfg.MODEL.ROI_BOX_HEAD.ADD_FEATURE_TO_PROP,
'mask_weight': cfg.MODEL.ROI_HEADS.MASK_WEIGHT,
'one_class_per_proposal': cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL,
})
return ret
@classmethod
def _init_box_head(self, cfg, input_shape):
ret = super()._init_box_head(cfg, input_shape)
del ret['box_predictors']
cascade_bbox_reg_weights = cfg.MODEL.ROI_BOX_CASCADE_HEAD.BBOX_REG_WEIGHTS
box_predictors = []
for box_head, bbox_reg_weights in zip(ret['box_heads'], \
cascade_bbox_reg_weights):
box_predictors.append(
DeticFastRCNNOutputLayers(
cfg, box_head.output_shape,
box2box_transform=Box2BoxTransform(weights=bbox_reg_weights)
))
ret['box_predictors'] = box_predictors
return ret
def _forward_box(self, features, proposals, targets=None,
ann_type='box', classifier_info=(None,None,None)):
"""
Add mult proposal scores at testing
Add ann_type
"""
if (not self.training) and self.mult_proposal_score:
if len(proposals) > 0 and proposals[0].has('scores'):
proposal_scores = [p.get('scores') for p in proposals]
else:
proposal_scores = [p.get('objectness_logits') for p in proposals]
features = [features[f] for f in self.box_in_features]
head_outputs = [] # (predictor, predictions, proposals)
prev_pred_boxes = None
image_sizes = [x.image_size for x in proposals]
for k in range(self.num_cascade_stages):
if k > 0:
proposals = self._create_proposals_from_boxes(
prev_pred_boxes, image_sizes,
logits=[p.objectness_logits for p in proposals])
if self.training and ann_type in ['box']:
proposals = self._match_and_label_boxes(
proposals, k, targets)
predictions = self._run_stage(features, proposals, k,
classifier_info=classifier_info)
prev_pred_boxes = self.box_predictor[k].predict_boxes(
(predictions[0], predictions[1]), proposals)
head_outputs.append((self.box_predictor[k], predictions, proposals))
if self.training:
losses = {}
storage = get_event_storage()
for stage, (predictor, predictions, proposals) in enumerate(head_outputs):
with storage.name_scope("stage{}".format(stage)):
if ann_type != 'box':
stage_losses = {}
if ann_type in ['image', 'caption', 'captiontag']:
image_labels = [x._pos_category_ids for x in targets]
weak_losses = predictor.image_label_losses(
predictions, proposals, image_labels,
classifier_info=classifier_info,
ann_type=ann_type)
stage_losses.update(weak_losses)
else: # supervised
stage_losses = predictor.losses(
(predictions[0], predictions[1]), proposals,
classifier_info=classifier_info)
if self.with_image_labels:
stage_losses['image_loss'] = \
predictions[0].new_zeros([1])[0]
losses.update({k + "_stage{}".format(stage): v \
for k, v in stage_losses.items()})
return losses
else:
# Each is a list[Tensor] of length #image. Each tensor is Ri x (K+1)
scores_per_stage = [h[0].predict_probs(h[1], h[2]) for h in head_outputs]
scores = [
sum(list(scores_per_image)) * (1.0 / self.num_cascade_stages)
for scores_per_image in zip(*scores_per_stage)
]
if self.mult_proposal_score:
scores = [(s * ps[:, None]) ** 0.5 \
for s, ps in zip(scores, proposal_scores)]
if self.one_class_per_proposal:
scores = [s * (s == s[:, :-1].max(dim=1)[0][:, None]).float() for s in scores]
predictor, predictions, proposals = head_outputs[-1]
boxes = predictor.predict_boxes(
(predictions[0], predictions[1]), proposals)
pred_instances, _ = fast_rcnn_inference(
boxes,
scores,
image_sizes,
predictor.test_score_thresh,
predictor.test_nms_thresh,
predictor.test_topk_per_image,
)
return pred_instances
def forward(self, images, features, proposals, targets=None,
ann_type='box', classifier_info=(None,None,None)):
'''
enable debug and image labels
classifier_info is shared across the batch
'''
if self.training:
if ann_type in ['box', 'prop', 'proptag']:
proposals = self.label_and_sample_proposals(
proposals, targets)
else:
proposals = self.get_top_proposals(proposals)
losses = self._forward_box(features, proposals, targets, \
ann_type=ann_type, classifier_info=classifier_info)
if ann_type == 'box' and targets[0].has('gt_masks'):
mask_losses = self._forward_mask(features, proposals)
losses.update({k: v * self.mask_weight \
for k, v in mask_losses.items()})
losses.update(self._forward_keypoint(features, proposals))
else:
losses.update(self._get_empty_mask_loss(
features, proposals,
device=proposals[0].objectness_logits.device))
return proposals, losses
else:
pred_instances = self._forward_box(
features, proposals, classifier_info=classifier_info)
pred_instances = self.forward_with_given_boxes(features, pred_instances)
return pred_instances, {}
def get_top_proposals(self, proposals):
for i in range(len(proposals)):
proposals[i].proposal_boxes.clip(proposals[i].image_size)
proposals = [p[:self.ws_num_props] for p in proposals]
for i, p in enumerate(proposals):
p.proposal_boxes.tensor = p.proposal_boxes.tensor.detach()
if self.add_image_box:
proposals[i] = self._add_image_box(p)
return proposals
def _add_image_box(self, p):
image_box = Instances(p.image_size)
n = 1
h, w = p.image_size
f = self.image_box_size
image_box.proposal_boxes = Boxes(
p.proposal_boxes.tensor.new_tensor(
[w * (1. - f) / 2.,
h * (1. - f) / 2.,
w * (1. - (1. - f) / 2.),
h * (1. - (1. - f) / 2.)]
).view(n, 4))
image_box.objectness_logits = p.objectness_logits.new_ones(n)
return Instances.cat([p, image_box])
def _get_empty_mask_loss(self, features, proposals, device):
if self.mask_on:
return {'loss_mask': torch.zeros(
(1, ), device=device, dtype=torch.float32)[0]}
else:
return {}
def _create_proposals_from_boxes(self, boxes, image_sizes, logits):
"""
Add objectness_logits
"""
boxes = [Boxes(b.detach()) for b in boxes]
proposals = []
for boxes_per_image, image_size, logit in zip(
boxes, image_sizes, logits):
boxes_per_image.clip(image_size)
if self.training:
inds = boxes_per_image.nonempty()
boxes_per_image = boxes_per_image[inds]
logit = logit[inds]
prop = Instances(image_size)
prop.proposal_boxes = boxes_per_image
prop.objectness_logits = logit
proposals.append(prop)
return proposals
def _run_stage(self, features, proposals, stage, \
classifier_info=(None,None,None)):
"""
Support classifier_info and add_feature_to_prop
"""
pool_boxes = [x.proposal_boxes for x in proposals]
box_features = self.box_pooler(features, pool_boxes)
box_features = _ScaleGradient.apply(box_features, 1.0 / self.num_cascade_stages)
box_features = self.box_head[stage](box_features)
if self.add_feature_to_prop:
feats_per_image = box_features.split(
[len(p) for p in proposals], dim=0)
for feat, p in zip(feats_per_image, proposals):
p.feat = feat
return self.box_predictor[stage](
box_features,
classifier_info=classifier_info)
|