Spaces:
Runtime error
Runtime error
File size: 27,109 Bytes
159f437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
# Part of the code is from https://github.com/tensorflow/models/blob/master/research/object_detection/metrics/oid_challenge_evaluation.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
# The original code is under Apache License, Version 2.0 (the "License");
# Part of the code is from https://github.com/lvis-dataset/lvis-api/blob/master/lvis/eval.py
# Copyright (c) 2019, Agrim Gupta and Ross Girshick
# Modified by Xingyi Zhou
# This script re-implement OpenImages evaluation in detectron2
# The code is from https://github.com/xingyizhou/UniDet/blob/master/projects/UniDet/unidet/evaluation/oideval.py
# The original code is under Apache-2.0 License
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import datetime
import logging
import itertools
from collections import OrderedDict
from collections import defaultdict
import copy
import json
import numpy as np
import torch
from tabulate import tabulate
from lvis.lvis import LVIS
from lvis.results import LVISResults
import pycocotools.mask as mask_utils
from fvcore.common.file_io import PathManager
import detectron2.utils.comm as comm
from detectron2.data import MetadataCatalog
from detectron2.evaluation.coco_evaluation import instances_to_coco_json
from detectron2.utils.logger import create_small_table
from detectron2.evaluation import DatasetEvaluator
def compute_average_precision(precision, recall):
"""Compute Average Precision according to the definition in VOCdevkit.
Precision is modified to ensure that it does not decrease as recall
decrease.
Args:
precision: A float [N, 1] numpy array of precisions
recall: A float [N, 1] numpy array of recalls
Raises:
ValueError: if the input is not of the correct format
Returns:
average_precison: The area under the precision recall curve. NaN if
precision and recall are None.
"""
if precision is None:
if recall is not None:
raise ValueError("If precision is None, recall must also be None")
return np.NAN
if not isinstance(precision, np.ndarray) or not isinstance(
recall, np.ndarray):
raise ValueError("precision and recall must be numpy array")
if precision.dtype != np.float or recall.dtype != np.float:
raise ValueError("input must be float numpy array.")
if len(precision) != len(recall):
raise ValueError("precision and recall must be of the same size.")
if not precision.size:
return 0.0
if np.amin(precision) < 0 or np.amax(precision) > 1:
raise ValueError("Precision must be in the range of [0, 1].")
if np.amin(recall) < 0 or np.amax(recall) > 1:
raise ValueError("recall must be in the range of [0, 1].")
if not all(recall[i] <= recall[i + 1] for i in range(len(recall) - 1)):
raise ValueError("recall must be a non-decreasing array")
recall = np.concatenate([[0], recall, [1]])
precision = np.concatenate([[0], precision, [0]])
for i in range(len(precision) - 2, -1, -1):
precision[i] = np.maximum(precision[i], precision[i + 1])
indices = np.where(recall[1:] != recall[:-1])[0] + 1
average_precision = np.sum(
(recall[indices] - recall[indices - 1]) * precision[indices])
return average_precision
class OIDEval:
def __init__(
self, lvis_gt, lvis_dt, iou_type="bbox", expand_pred_label=False,
oid_hierarchy_path='./datasets/oid/annotations/challenge-2019-label500-hierarchy.json'):
"""Constructor for OIDEval.
Args:
lvis_gt (LVIS class instance, or str containing path of annotation file)
lvis_dt (LVISResult class instance, or str containing path of result file,
or list of dict)
iou_type (str): segm or bbox evaluation
"""
self.logger = logging.getLogger(__name__)
if iou_type not in ["bbox", "segm"]:
raise ValueError("iou_type: {} is not supported.".format(iou_type))
if isinstance(lvis_gt, LVIS):
self.lvis_gt = lvis_gt
elif isinstance(lvis_gt, str):
self.lvis_gt = LVIS(lvis_gt)
else:
raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))
if isinstance(lvis_dt, LVISResults):
self.lvis_dt = lvis_dt
elif isinstance(lvis_dt, (str, list)):
# self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt, max_dets=-1)
self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
else:
raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))
if expand_pred_label:
oid_hierarchy = json.load(open(oid_hierarchy_path, 'r'))
cat_info = self.lvis_gt.dataset['categories']
freebase2id = {x['freebase_id']: x['id'] for x in cat_info}
id2freebase = {x['id']: x['freebase_id'] for x in cat_info}
id2name = {x['id']: x['name'] for x in cat_info}
fas = defaultdict(set)
def dfs(hierarchy, cur_id):
all_childs = set()
all_keyed_child = {}
if 'Subcategory' in hierarchy:
for x in hierarchy['Subcategory']:
childs = dfs(x, freebase2id[x['LabelName']])
all_childs.update(childs)
if cur_id != -1:
for c in all_childs:
fas[c].add(cur_id)
all_childs.add(cur_id)
return all_childs
dfs(oid_hierarchy, -1)
expanded_pred = []
id_count = 0
for d in self.lvis_dt.dataset['annotations']:
cur_id = d['category_id']
ids = [cur_id] + [x for x in fas[cur_id]]
for cat_id in ids:
new_box = copy.deepcopy(d)
id_count = id_count + 1
new_box['id'] = id_count
new_box['category_id'] = cat_id
expanded_pred.append(new_box)
print('Expanding original {} preds to {} preds'.format(
len(self.lvis_dt.dataset['annotations']),
len(expanded_pred)
))
self.lvis_dt.dataset['annotations'] = expanded_pred
self.lvis_dt._create_index()
# per-image per-category evaluation results
self.eval_imgs = defaultdict(list)
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iou_type=iou_type) # parameters
self.results = OrderedDict()
self.ious = {} # ious between all gts and dts
self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())
def _to_mask(self, anns, lvis):
for ann in anns:
rle = lvis.ann_to_rle(ann)
ann["segmentation"] = rle
def _prepare(self):
"""Prepare self._gts and self._dts for evaluation based on params."""
cat_ids = self.params.cat_ids if self.params.cat_ids else None
gts = self.lvis_gt.load_anns(
self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids)
)
dts = self.lvis_dt.load_anns(
self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids)
)
# convert ground truth to mask if iou_type == 'segm'
if self.params.iou_type == "segm":
self._to_mask(gts, self.lvis_gt)
self._to_mask(dts, self.lvis_dt)
for gt in gts:
self._gts[gt["image_id"], gt["category_id"]].append(gt)
# For federated dataset evaluation we will filter out all dt for an
# image which belong to categories not present in gt and not present in
# the negative list for an image. In other words detector is not penalized
# for categories about which we don't have gt information about their
# presence or absence in an image.
img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids)
# per image map of categories not present in image
img_nl = {d["id"]: d["neg_category_ids"] for d in img_data}
# per image list of categories present in image
img_pl = {d["id"]: d["pos_category_ids"] for d in img_data}
# img_pl = defaultdict(set)
for ann in gts:
# img_pl[ann["image_id"]].add(ann["category_id"])
assert ann["category_id"] in img_pl[ann["image_id"]]
# print('check pos ids OK.')
for dt in dts:
img_id, cat_id = dt["image_id"], dt["category_id"]
if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]:
continue
self._dts[img_id, cat_id].append(dt)
def evaluate(self):
"""
Run per image evaluation on given images and store results
(a list of dict) in self.eval_imgs.
"""
self.logger.info("Running per image evaluation.")
self.logger.info("Evaluate annotation type *{}*".format(self.params.iou_type))
self.params.img_ids = list(np.unique(self.params.img_ids))
if self.params.use_cats:
cat_ids = self.params.cat_ids
else:
cat_ids = [-1]
self._prepare()
self.ious = {
(img_id, cat_id): self.compute_iou(img_id, cat_id)
for img_id in self.params.img_ids
for cat_id in cat_ids
}
# loop through images, area range, max detection number
print('Evaluating ...')
self.eval_imgs = [
self.evaluate_img_google(img_id, cat_id, area_rng)
for cat_id in cat_ids
for area_rng in self.params.area_rng
for img_id in self.params.img_ids
]
def _get_gt_dt(self, img_id, cat_id):
"""Create gt, dt which are list of anns/dets. If use_cats is true
only anns/dets corresponding to tuple (img_id, cat_id) will be
used. Else, all anns/dets in image are used and cat_id is not used.
"""
if self.params.use_cats:
gt = self._gts[img_id, cat_id]
dt = self._dts[img_id, cat_id]
else:
gt = [
_ann
for _cat_id in self.params.cat_ids
for _ann in self._gts[img_id, cat_id]
]
dt = [
_ann
for _cat_id in self.params.cat_ids
for _ann in self._dts[img_id, cat_id]
]
return gt, dt
def compute_iou(self, img_id, cat_id):
gt, dt = self._get_gt_dt(img_id, cat_id)
if len(gt) == 0 and len(dt) == 0:
return []
# Sort detections in decreasing order of score.
idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in idx]
# iscrowd = [int(False)] * len(gt)
iscrowd = [int('iscrowd' in g and g['iscrowd'] > 0) for g in gt]
if self.params.iou_type == "segm":
ann_type = "segmentation"
elif self.params.iou_type == "bbox":
ann_type = "bbox"
else:
raise ValueError("Unknown iou_type for iou computation.")
gt = [g[ann_type] for g in gt]
dt = [d[ann_type] for d in dt]
# compute iou between each dt and gt region
# will return array of shape len(dt), len(gt)
ious = mask_utils.iou(dt, gt, iscrowd)
return ious
def evaluate_img_google(self, img_id, cat_id, area_rng):
gt, dt = self._get_gt_dt(img_id, cat_id)
if len(gt) == 0 and len(dt) == 0:
return None
if len(dt) == 0:
return {
"image_id": img_id,
"category_id": cat_id,
"area_rng": area_rng,
"dt_ids": [],
"dt_matches": np.array([], dtype=np.int32).reshape(1, -1),
"dt_scores": [],
"dt_ignore": np.array([], dtype=np.int32).reshape(1, -1),
'num_gt': len(gt)
}
no_crowd_inds = [i for i, g in enumerate(gt) \
if ('iscrowd' not in g) or g['iscrowd'] == 0]
crowd_inds = [i for i, g in enumerate(gt) \
if 'iscrowd' in g and g['iscrowd'] == 1]
dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
if len(self.ious[img_id, cat_id]) > 0:
ious = self.ious[img_id, cat_id]
iou = ious[:, no_crowd_inds]
iou = iou[dt_idx]
ioa = ious[:, crowd_inds]
ioa = ioa[dt_idx]
else:
iou = np.zeros((len(dt_idx), 0))
ioa = np.zeros((len(dt_idx), 0))
scores = np.array([dt[i]['score'] for i in dt_idx])
num_detected_boxes = len(dt)
tp_fp_labels = np.zeros(num_detected_boxes, dtype=bool)
is_matched_to_group_of = np.zeros(num_detected_boxes, dtype=bool)
def compute_match_iou(iou):
max_overlap_gt_ids = np.argmax(iou, axis=1)
is_gt_detected = np.zeros(iou.shape[1], dtype=bool)
for i in range(num_detected_boxes):
gt_id = max_overlap_gt_ids[i]
is_evaluatable = (not tp_fp_labels[i] and
iou[i, gt_id] >= 0.5 and
not is_matched_to_group_of[i])
if is_evaluatable:
if not is_gt_detected[gt_id]:
tp_fp_labels[i] = True
is_gt_detected[gt_id] = True
def compute_match_ioa(ioa):
scores_group_of = np.zeros(ioa.shape[1], dtype=float)
tp_fp_labels_group_of = np.ones(
ioa.shape[1], dtype=float)
max_overlap_group_of_gt_ids = np.argmax(ioa, axis=1)
for i in range(num_detected_boxes):
gt_id = max_overlap_group_of_gt_ids[i]
is_evaluatable = (not tp_fp_labels[i] and
ioa[i, gt_id] >= 0.5 and
not is_matched_to_group_of[i])
if is_evaluatable:
is_matched_to_group_of[i] = True
scores_group_of[gt_id] = max(scores_group_of[gt_id], scores[i])
selector = np.where((scores_group_of > 0) & (tp_fp_labels_group_of > 0))
scores_group_of = scores_group_of[selector]
tp_fp_labels_group_of = tp_fp_labels_group_of[selector]
return scores_group_of, tp_fp_labels_group_of
if iou.shape[1] > 0:
compute_match_iou(iou)
scores_box_group_of = np.ndarray([0], dtype=float)
tp_fp_labels_box_group_of = np.ndarray([0], dtype=float)
if ioa.shape[1] > 0:
scores_box_group_of, tp_fp_labels_box_group_of = compute_match_ioa(ioa)
valid_entries = (~is_matched_to_group_of)
scores = np.concatenate(
(scores[valid_entries], scores_box_group_of))
tp_fps = np.concatenate(
(tp_fp_labels[valid_entries].astype(float),
tp_fp_labels_box_group_of))
return {
"image_id": img_id,
"category_id": cat_id,
"area_rng": area_rng,
"dt_matches": np.array([1 if x > 0 else 0 for x in tp_fps], dtype=np.int32).reshape(1, -1),
"dt_scores": [x for x in scores],
"dt_ignore": np.array([0 for x in scores], dtype=np.int32).reshape(1, -1),
'num_gt': len(gt)
}
def accumulate(self):
"""Accumulate per image evaluation results and store the result in
self.eval.
"""
self.logger.info("Accumulating evaluation results.")
if not self.eval_imgs:
self.logger.warn("Please run evaluate first.")
if self.params.use_cats:
cat_ids = self.params.cat_ids
else:
cat_ids = [-1]
num_thrs = 1
num_recalls = 1
num_cats = len(cat_ids)
num_area_rngs = 1
num_imgs = len(self.params.img_ids)
# -1 for absent categories
precision = -np.ones(
(num_thrs, num_recalls, num_cats, num_area_rngs)
)
recall = -np.ones((num_thrs, num_cats, num_area_rngs))
# Initialize dt_pointers
dt_pointers = {}
for cat_idx in range(num_cats):
dt_pointers[cat_idx] = {}
for area_idx in range(num_area_rngs):
dt_pointers[cat_idx][area_idx] = {}
# Per category evaluation
for cat_idx in range(num_cats):
Nk = cat_idx * num_area_rngs * num_imgs
for area_idx in range(num_area_rngs):
Na = area_idx * num_imgs
E = [
self.eval_imgs[Nk + Na + img_idx]
for img_idx in range(num_imgs)
]
# Remove elements which are None
E = [e for e in E if not e is None]
if len(E) == 0:
continue
dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0)
dt_idx = np.argsort(-dt_scores, kind="mergesort")
dt_scores = dt_scores[dt_idx]
dt_m = np.concatenate([e["dt_matches"] for e in E], axis=1)[:, dt_idx]
dt_ig = np.concatenate([e["dt_ignore"] for e in E], axis=1)[:, dt_idx]
num_gt = sum([e['num_gt'] for e in E])
if num_gt == 0:
continue
tps = np.logical_and(dt_m, np.logical_not(dt_ig))
fps = np.logical_and(np.logical_not(dt_m), np.logical_not(dt_ig))
tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)
dt_pointers[cat_idx][area_idx] = {
"tps": tps,
"fps": fps,
}
for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
num_tp = len(tp)
rc = tp / num_gt
if num_tp:
recall[iou_thr_idx, cat_idx, area_idx] = rc[
-1
]
else:
recall[iou_thr_idx, cat_idx, area_idx] = 0
# np.spacing(1) ~= eps
pr = tp / (fp + tp + np.spacing(1))
pr = pr.tolist()
for i in range(num_tp - 1, 0, -1):
if pr[i] > pr[i - 1]:
pr[i - 1] = pr[i]
mAP = compute_average_precision(
np.array(pr, np.float).reshape(-1),
np.array(rc, np.float).reshape(-1))
precision[iou_thr_idx, :, cat_idx, area_idx] = mAP
self.eval = {
"params": self.params,
"counts": [num_thrs, num_recalls, num_cats, num_area_rngs],
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"precision": precision,
"recall": recall,
"dt_pointers": dt_pointers,
}
def _summarize(self, summary_type):
s = self.eval["precision"]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
# print(s.reshape(1, 1, -1, 1))
return mean_s
def summarize(self):
"""Compute and display summary metrics for evaluation results."""
if not self.eval:
raise RuntimeError("Please run accumulate() first.")
max_dets = self.params.max_dets
self.results["AP50"] = self._summarize('ap')
def run(self):
"""Wrapper function which calculates the results."""
self.evaluate()
self.accumulate()
self.summarize()
def print_results(self):
template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}"
for key, value in self.results.items():
max_dets = self.params.max_dets
if "AP" in key:
title = "Average Precision"
_type = "(AP)"
else:
title = "Average Recall"
_type = "(AR)"
if len(key) > 2 and key[2].isdigit():
iou_thr = (float(key[2:]) / 100)
iou = "{:0.2f}".format(iou_thr)
else:
iou = "{:0.2f}:{:0.2f}".format(
self.params.iou_thrs[0], self.params.iou_thrs[-1]
)
cat_group_name = "all"
area_rng = "all"
print(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value))
def get_results(self):
if not self.results:
self.logger.warn("results is empty. Call run().")
return self.results
class Params:
def __init__(self, iou_type):
self.img_ids = []
self.cat_ids = []
# np.arange causes trouble. the data point on arange is slightly
# larger than the true value
self.iou_thrs = np.linspace(
0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True
)
self.google_style = True
# print('Using google style PR curve')
self.iou_thrs = self.iou_thrs[:1]
self.max_dets = 1000
self.area_rng = [
[0 ** 2, 1e5 ** 2],
]
self.area_rng_lbl = ["all"]
self.use_cats = 1
self.iou_type = iou_type
class OIDEvaluator(DatasetEvaluator):
def __init__(self, dataset_name, cfg, distributed, output_dir=None):
self._distributed = distributed
self._output_dir = output_dir
self._cpu_device = torch.device("cpu")
self._logger = logging.getLogger(__name__)
self._metadata = MetadataCatalog.get(dataset_name)
json_file = PathManager.get_local_path(self._metadata.json_file)
self._oid_api = LVIS(json_file)
# Test set json files do not contain annotations (evaluation must be
# performed using the LVIS evaluation server).
self._do_evaluation = len(self._oid_api.get_ann_ids()) > 0
self._mask_on = cfg.MODEL.MASK_ON
def reset(self):
self._predictions = []
self._oid_results = []
def process(self, inputs, outputs):
for input, output in zip(inputs, outputs):
prediction = {"image_id": input["image_id"]}
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = instances_to_coco_json(
instances, input["image_id"])
self._predictions.append(prediction)
def evaluate(self):
if self._distributed:
comm.synchronize()
self._predictions = comm.gather(self._predictions, dst=0)
self._predictions = list(itertools.chain(*self._predictions))
if not comm.is_main_process():
return
if len(self._predictions) == 0:
self._logger.warning("[LVISEvaluator] Did not receive valid predictions.")
return {}
self._logger.info("Preparing results in the OID format ...")
self._oid_results = list(
itertools.chain(*[x["instances"] for x in self._predictions]))
# unmap the category ids for LVIS (from 0-indexed to 1-indexed)
for result in self._oid_results:
result["category_id"] += 1
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(
self._output_dir, "oid_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(self._oid_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info("Evaluating predictions ...")
self._results = OrderedDict()
res, mAP = _evaluate_predictions_on_oid(
self._oid_api,
file_path,
eval_seg=self._mask_on,
class_names=self._metadata.get("thing_classes"),
)
self._results['bbox'] = res
mAP_out_path = os.path.join(self._output_dir, "oid_mAP.npy")
self._logger.info('Saving mAP to' + mAP_out_path)
np.save(mAP_out_path, mAP)
return copy.deepcopy(self._results)
def _evaluate_predictions_on_oid(
oid_gt, oid_results_path, eval_seg=False,
class_names=None):
logger = logging.getLogger(__name__)
metrics = ["AP50", "AP50_expand"]
results = {}
oid_eval = OIDEval(oid_gt, oid_results_path, 'bbox', expand_pred_label=False)
oid_eval.run()
oid_eval.print_results()
results["AP50"] = oid_eval.get_results()["AP50"]
if eval_seg:
oid_eval = OIDEval(oid_gt, oid_results_path, 'segm', expand_pred_label=False)
oid_eval.run()
oid_eval.print_results()
results["AP50_segm"] = oid_eval.get_results()["AP50"]
else:
oid_eval = OIDEval(oid_gt, oid_results_path, 'bbox', expand_pred_label=True)
oid_eval.run()
oid_eval.print_results()
results["AP50_expand"] = oid_eval.get_results()["AP50"]
mAP = np.zeros(len(class_names)) - 1
precisions = oid_eval.eval['precision']
assert len(class_names) == precisions.shape[2]
results_per_category = []
id2apiid = sorted(oid_gt.get_cat_ids())
inst_aware_ap, inst_count = 0, 0
for idx, name in enumerate(class_names):
precision = precisions[:, :, idx, 0]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
inst_num = len(oid_gt.get_ann_ids(cat_ids=[id2apiid[idx]]))
if inst_num > 0:
results_per_category.append(("{} {}".format(
name.replace(' ', '_'),
inst_num if inst_num < 1000 else '{:.1f}k'.format(inst_num / 1000)),
float(ap * 100)))
inst_aware_ap += inst_num * ap
inst_count += inst_num
mAP[idx] = ap
# logger.info("{} {} {:.2f}".format(name, inst_num, ap * 100))
inst_aware_ap = inst_aware_ap * 100 / inst_count
N_COLS = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)])
table = tabulate(
results_2d,
tablefmt="pipe",
floatfmt=".3f",
headers=["category", "AP"] * (N_COLS // 2),
numalign="left",
)
logger.info("Per-category {} AP: \n".format('bbox') + table)
logger.info("Instance-aware {} AP: {:.4f}".format('bbox', inst_aware_ap))
logger.info("Evaluation results for bbox: \n" + \
create_small_table(results))
return results, mAP |