File size: 5,148 Bytes
159f437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.

import os
import numpy as np
import sys

sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/')
sys.path.insert(0, 'third_party/Deformable-DETR')
from detic.data.tar_dataset import _TarDataset, DiskTarDataset
import pickle
import io
import gzip
import time


class _RawTarDataset(object):

    def __init__(self, filename, indexname, preload=False):
        self.filename = filename
        self.names = []
        self.offsets = []

        for l in open(indexname):
            ll = l.split()
            a, b, c = ll[:3]
            offset = int(b[:-1])
            if l.endswith('** Block of NULs **\n'):
                self.offsets.append(offset)
                break
            else:
                if c.endswith('JPEG'):
                    self.names.append(c)
                    self.offsets.append(offset)
                else:
                    # ignore directories
                    pass
        if preload:
            self.data = np.memmap(filename, mode='r', dtype='uint8')
        else:
            self.data = None

    def __len__(self):
        return len(self.names)

    def __getitem__(self, idx):
        if self.data is None:
            self.data = np.memmap(self.filename, mode='r', dtype='uint8')
        ofs = self.offsets[idx] * 512
        fsize = 512 * (self.offsets[idx + 1] - self.offsets[idx])
        data = self.data[ofs:ofs + fsize]

        if data[:13].tostring() == '././@LongLink':
            data = data[3 * 512:]
        else:
            data = data[512:]

        # just to make it more fun a few JPEGs are GZIP compressed...
        # catch this case
        if tuple(data[:2]) == (0x1f, 0x8b):
            s = io.StringIO(data.tostring())
            g = gzip.GzipFile(None, 'r', 0, s)
            sdata = g.read()
        else:
            sdata = data.tostring()
        return sdata



def preprocess():
    # Follow https://github.com/Alibaba-MIIL/ImageNet21K/blob/main/dataset_preprocessing/processing_script.sh
    # Expect 12358684 samples with 11221 classes
    # ImageNet folder has 21841 classes (synsets)

    i22kdir = '/datasets01/imagenet-22k/062717/'
    i22ktarlogs = '/checkpoint/imisra/datasets/imagenet-22k/tarindex'
    class_names_file = '/checkpoint/imisra/datasets/imagenet-22k/words.txt'

    output_dir = '/checkpoint/zhouxy/Datasets/ImageNet/metadata-22k/'
    i22knpytarlogs = '/checkpoint/zhouxy/Datasets/ImageNet/metadata-22k/tarindex_npy'
    print('Listing dir')
    log_files = os.listdir(i22ktarlogs)
    log_files = [x for x in log_files if x.endswith(".tarlog")]
    log_files.sort()
    chunk_datasets = []
    dataset_lens = []
    min_count = 0
    create_npy_tarlogs = True
    print('Creating folders')
    if create_npy_tarlogs:
        os.makedirs(i22knpytarlogs, exist_ok=True)
        for log_file in log_files:
            syn = log_file.replace(".tarlog", "")
            dataset = _RawTarDataset(os.path.join(i22kdir, syn + ".tar"),
                                    os.path.join(i22ktarlogs, syn + ".tarlog"),
                                    preload=False)
            names = np.array(dataset.names)
            offsets = np.array(dataset.offsets, dtype=np.int64)
            np.save(os.path.join(i22knpytarlogs, f"{syn}_names.npy"), names)
            np.save(os.path.join(i22knpytarlogs, f"{syn}_offsets.npy"), offsets)

    os.makedirs(output_dir, exist_ok=True)

    start_time = time.time()
    for log_file in log_files:
        syn = log_file.replace(".tarlog", "")
        dataset = _TarDataset(os.path.join(i22kdir, syn + ".tar"), i22knpytarlogs)
        # dataset = _RawTarDataset(os.path.join(i22kdir, syn + ".tar"),
        #                             os.path.join(i22ktarlogs, syn + ".tarlog"),
        #                             preload=False)
        dataset_lens.append(len(dataset))
    end_time = time.time()
    print(f"Time {end_time - start_time}")


    dataset_lens = np.array(dataset_lens)
    dataset_valid = dataset_lens > min_count

    syn2class = {}
    with open(class_names_file) as fh:
        for line in fh:
            line = line.strip().split("\t")
            syn2class[line[0]] = line[1]

    tarlog_files = []
    class_names = []
    tar_files = []
    for k in range(len(dataset_valid)):
        if not dataset_valid[k]:
            continue
        syn = log_files[k].replace(".tarlog", "")
        tarlog_files.append(os.path.join(i22ktarlogs, syn + ".tarlog"))
        tar_files.append(os.path.join(i22kdir, syn + ".tar"))
        class_names.append(syn2class[syn])

    tarlog_files = np.array(tarlog_files)
    tar_files = np.array(tar_files)
    class_names = np.array(class_names)
    print(f"Have {len(class_names)} classes and {dataset_lens[dataset_valid].sum()} samples")

    np.save(os.path.join(output_dir, "tarlog_files.npy"), tarlog_files)
    np.save(os.path.join(output_dir, "tar_files.npy"), tar_files)
    np.save(os.path.join(output_dir, "class_names.npy"), class_names)
    np.save(os.path.join(output_dir, "tar_files.npy"), tar_files)


if __name__ == "__main__":
    preprocess()