File size: 4,861 Bytes
dbe4fe6
 
 
 
 
 
 
 
 
f8f84a0
dbe4fe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870617
dbe4fe6
 
 
 
 
f8f84a0
c6743a5
dbe4fe6
 
 
 
 
 
 
 
f8f84a0
 
dbe4fe6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os

os.system("wget https://github.com/Sxela/ArcaneGAN/releases/download/v0.2/ArcaneGANv0.2.jit")
os.system("pip -qq install facenet_pytorch")


from facenet_pytorch import MTCNN
from torchvision import transforms
import torch, PIL
torch.hub.download_url_to_file('https://www.giantfreakinrobot.com/wp-content/uploads/2021/02/adult-groot.jpg', 'groot.jpg')

from tqdm.notebook import tqdm
import gradio as gr

mtcnn = MTCNN(image_size=256, margin=80)

# simplest ye olde trustworthy MTCNN for face detection with landmarks
def detect(img):
 
        # Detect faces
        batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True)
        # Select faces
        if not mtcnn.keep_all:
            batch_boxes, batch_probs, batch_points = mtcnn.select_boxes(
                batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method
            )
 
        return batch_boxes, batch_points

# my version of isOdd, should make a separate repo for it :D
def makeEven(_x):
  return _x if (_x % 2 == 0) else _x+1

# the actual scaler function
def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False):
 
    x, y = _img.size
 
    ratio = 2 #initial ratio
 
    #scale to desired face size
    if (boxes is not None):
      if len(boxes)>0:
        ratio = target_face/max(boxes[0][2:]-boxes[0][:2]); 
        ratio = min(ratio, max_upscale)
        if VERBOSE: print('up by', ratio)

    if fixed_ratio>0:
      if VERBOSE: print('fixed ratio')
      ratio = fixed_ratio
 
    x*=ratio
    y*=ratio
 
    #downscale to fit into max res 
    res = x*y
    if res > max_res:
      ratio = pow(res/max_res,1/2); 
      if VERBOSE: print(ratio)
      x=int(x/ratio)
      y=int(y/ratio)
 
    #make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch
    x = makeEven(int(x))
    y = makeEven(int(y))
    
    size = (x, y)

    return _img.resize(size)

""" 
    A useful scaler algorithm, based on face detection.
    Takes PIL.Image, returns a uniformly scaled PIL.Image
    boxes: a list of detected bboxes
    _img: PIL.Image
    max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU.
    target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension.
    fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit.
    max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess.
"""

def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False):
    boxes = None
    boxes, _ = detect(_img)
    if VERBOSE: print('boxes',boxes)
    img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE)
    return img_resized


size = 256

means = [0.485, 0.456, 0.406]
stds = [0.229, 0.224, 0.225]

t_stds = torch.tensor(stds).cpu()[:,None,None]
t_means = torch.tensor(means).cpu()[:,None,None]

def makeEven(_x):
  return int(_x) if (_x % 2 == 0) else int(_x+1)

img_transforms = transforms.Compose([                        
            transforms.ToTensor(),
            transforms.Normalize(means,stds)])
 
def tensor2im(var):
     return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0)

def proc_pil_img(input_image, model):
    transformed_image = img_transforms(input_image)[None,...].cpu()
            
    with torch.no_grad():
        result_image = model(transformed_image)[0]; print(result_image.shape)
        output_image = tensor2im(result_image)
        output_image = output_image.detach().cpu().numpy().astype('uint8')
        output_image = PIL.Image.fromarray(output_image)
    return output_image



model_path = './ArcaneGANv0.2.jit' 

model = torch.jit.load(model_path,map_location='cpu').to('cpu').float().eval().cpu()

def fit(img,maxsize=512):
  maxdim = max(*img.size)
  if maxdim>maxsize:
    ratio = maxsize/maxdim
    x,y = img.size
    size = (int(x*ratio),int(y*ratio)) 
    img = img.resize(size)
  return img
 


def process(im):
    im = scale_by_face_size(im, target_face=300, max_res=1_500_000, max_upscale=2)
    res = proc_pil_img(im, model)
    return res
        
title = "ArcaneGAN"
description = "Gradio demo for ArcaneGAN, portrait to Arcane style. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://github.com/Sxela/ArcaneGAN' target='_blank'>Github Repo</a></p>"

gr.Interface(
    process, 
    gr.inputs.Image(type="pil", label="Input"), 
    gr.outputs.Image(type="pil", label="Output"),
    title=title,
    description=description,
    article=article,
    examples=[['groot.jpg']],
    enable_queue=True
   ).launch(debug=True)