Spaces:
Running
on
T4
Running
on
T4
File size: 2,144 Bytes
56a97f7 148a19e c250292 dd53e8c b1775dd ceab150 50b7dca dd8ad63 46bd6e1 810d24d a9636e0 b767bd0 46bd6e1 d08bf1f ed3cb4e dd8ad63 148a19e dd8ad63 45f8f81 148a19e 72015f8 148a19e 56a97f7 f30be72 09a9a44 0c7c6c4 eb55bfe 72015f8 68e4080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
from PIL import Image
import torch
import gradio as gr
model2 = torch.hub.load(
"AK391/animegan2-pytorch:main",
"generator",
pretrained=True,
device="cuda",
progress=False
)
model1 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device="cuda")
face2paint = torch.hub.load(
'AK391/animegan2-pytorch:main', 'face2paint',
size=512, device="cuda",side_by_side=False
)
def inference(img, ver):
if ver == 'version 2 (🔺 robustness,🔻 stylization)':
out = face2paint(model2, img)
else:
out = face2paint(model1, img)
return out
title = "AnimeGANv2"
description = "Gradio Demo for AnimeGanv2 Face Portrait. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below."
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>"
examples=[['groot.jpeg','version 2 (🔺 robustness,🔻 stylization)'],['bill.png','version 1 (🔺 stylization, 🔻 robustness)'],['tony.png','version 1 (🔺 stylization, 🔻 robustness)'],['elon.png','version 2 (🔺 robustness,🔻 stylization)'],['IU.png','version 1 (🔺 stylization, 🔻 robustness)'],['billie.png','version 2 (🔺 robustness,🔻 stylization)'],['will.png','version 2 (🔺 robustness,🔻 stylization)'],['beyonce.png','version 1 (🔺 stylization, 🔻 robustness)'],['gongyoo.jpeg','version 1 (🔺 stylization, 🔻 robustness)']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Radio(['version 1 (🔺 stylization, 🔻 robustness)','version 2 (🔺 robustness,🔻 stylization)'], type="value", default='version 2 (🔺 robustness,🔻 stylization)', label='version')
], gr.outputs.Image(type="pil"),title=title,description=description,article=article,examples=examples,allow_flagging=False,allow_screenshot=False).launch() |