File size: 7,313 Bytes
56a97f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f81f892
 
56a97f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
os.system("git clone https://github.com/bryandlee/animegan2-pytorch")

os.system("gdown https://drive.google.com/uc?id=1WK5Mdt6mwlcsqCZMHkCUSDJxN1UyFi0-")
os.system("gdown https://drive.google.com/uc?id=18H3iK09_d54qEDoWIc82SyWB2xun4gjU")

import sys
sys.path.append("animegan2-pytorch")

import torch
torch.set_grad_enabled(False)

from model import Generator

device = "cpu"

model = Generator().eval().to(device)
model.load_state_dict(torch.load("face_paint_512_v2_0.pt"))

from PIL import Image
from torchvision.transforms.functional import to_tensor, to_pil_image

def face2paint(
    img: Image.Image,
    size: int,
    side_by_side: bool = True,
) -> Image.Image:

    w, h = img.size
    s = min(w, h)
    img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
    img = img.resize((size, size), Image.LANCZOS)

    input = to_tensor(img).unsqueeze(0) * 2 - 1
    output = model(input.to(device)).cpu()[0]

    if side_by_side:
        output = torch.cat([input[0], output], dim=2)

    output = (output * 0.5 + 0.5).clip(0, 1)

    return to_pil_image(output)
    



import os
import dlib
import collections
from typing import Union, List
import numpy as np
from PIL import Image


def get_dlib_face_detector(predictor_path: str = "shape_predictor_68_face_landmarks.dat"):

    if not os.path.isfile(predictor_path):
        model_file = "shape_predictor_68_face_landmarks.dat.bz2"
        os.system("wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2")
        os.system("bzip2 -dk shape_predictor_68_face_landmarks.dat.bz2")

    detector = dlib.get_frontal_face_detector()
    shape_predictor = dlib.shape_predictor(predictor_path)

    def detect_face_landmarks(img: Union[Image.Image, np.ndarray]):
        if isinstance(img, Image.Image):
            img = np.array(img)
        faces = []
        dets = detector(img)
        for d in dets:
            shape = shape_predictor(img, d)
            faces.append(np.array([[v.x, v.y] for v in shape.parts()]))
        return faces
    
    return detect_face_landmarks


def display_facial_landmarks(
    img: Image, 
    landmarks: List[np.ndarray],
    fig_size=[15, 15]
):
    plot_style = dict(
        marker='o',
        markersize=4,
        linestyle='-',
        lw=2
    )
    pred_type = collections.namedtuple('prediction_type', ['slice', 'color'])
    pred_types = {
        'face': pred_type(slice(0, 17), (0.682, 0.780, 0.909, 0.5)),
        'eyebrow1': pred_type(slice(17, 22), (1.0, 0.498, 0.055, 0.4)),
        'eyebrow2': pred_type(slice(22, 27), (1.0, 0.498, 0.055, 0.4)),
        'nose': pred_type(slice(27, 31), (0.345, 0.239, 0.443, 0.4)),
        'nostril': pred_type(slice(31, 36), (0.345, 0.239, 0.443, 0.4)),
        'eye1': pred_type(slice(36, 42), (0.596, 0.875, 0.541, 0.3)),
        'eye2': pred_type(slice(42, 48), (0.596, 0.875, 0.541, 0.3)),
        'lips': pred_type(slice(48, 60), (0.596, 0.875, 0.541, 0.3)),
        'teeth': pred_type(slice(60, 68), (0.596, 0.875, 0.541, 0.4))
    }


    for face in landmarks:
        for pred_type in pred_types.values():
            ax.plot(
                face[pred_type.slice, 0],
                face[pred_type.slice, 1],
                color=pred_type.color, **plot_style
            )

import PIL.Image
import PIL.ImageFile
import numpy as np
import scipy.ndimage


def align_and_crop_face(
    img: Image.Image,
    landmarks: np.ndarray,
    expand: float = 1.0,
    output_size: int = 1024, 
    transform_size: int = 4096,
    enable_padding: bool = True,
):
    # Parse landmarks.
    # pylint: disable=unused-variable
    lm = landmarks
    lm_chin          = lm[0  : 17]  # left-right
    lm_eyebrow_left  = lm[17 : 22]  # left-right
    lm_eyebrow_right = lm[22 : 27]  # left-right
    lm_nose          = lm[27 : 31]  # top-down
    lm_nostrils      = lm[31 : 36]  # top-down
    lm_eye_left      = lm[36 : 42]  # left-clockwise
    lm_eye_right     = lm[42 : 48]  # left-clockwise
    lm_mouth_outer   = lm[48 : 60]  # left-clockwise
    lm_mouth_inner   = lm[60 : 68]  # left-clockwise

    # Calculate auxiliary vectors.
    eye_left     = np.mean(lm_eye_left, axis=0)
    eye_right    = np.mean(lm_eye_right, axis=0)
    eye_avg      = (eye_left + eye_right) * 0.5
    eye_to_eye   = eye_right - eye_left
    mouth_left   = lm_mouth_outer[0]
    mouth_right  = lm_mouth_outer[6]
    mouth_avg    = (mouth_left + mouth_right) * 0.5
    eye_to_mouth = mouth_avg - eye_avg

    # Choose oriented crop rectangle.
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    x *= expand
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    qsize = np.hypot(*x) * 2

    # Shrink.
    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
        rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
        img = img.resize(rsize, PIL.Image.ANTIALIAS)
        quad /= shrink
        qsize /= shrink

    # Crop.
    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
    crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
        img = img.crop(crop)
        quad -= crop[0:2]

    # Pad.
    pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
    pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
        h, w, _ = img.shape
        y, x, _ = np.ogrid[:h, :w, :1]
        mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
        blur = qsize * 0.02
        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
        img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
        quad += pad[:2]

    # Transform.
    img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
    if output_size < transform_size:
        img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)

    return img
    

import requests

def inference(image):
  img = image
  face_detector = get_dlib_face_detector()
  landmarks = face_detector(img)
  
  display_facial_landmarks(img, landmarks, fig_size=[5, 5])
  
  for landmark in landmarks:
      face = align_and_crop_face(img, landmark, expand=1.3)
      out = face2paint(face, 512)
  
  return out
  
  

iface = gr.Interface(inference, "image", "image")
iface.launch()