File size: 5,190 Bytes
d8cec1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from bs4 import BeautifulSoup
import re
import requests
import json
import math

'''Script for scraping and formatting Supreme Court case summaries and court opinions from Justia since 2013'''

def remove_tags(text: str) -> str:
    '''helper method'''
    text = re.sub(r'\t|\r', '', text)
    text = re.sub(r'\n', ' ', text)
    text.encode('ascii', 'ignore').decode()
    return text

def clean_soup(url, verbose=False):
    '''Get docket no, court opinion, and justice opinions for a given case url'''

    r = requests.get(url)
    soup = BeautifulSoup(r.content, 'html')
    case_details = dict()

    docket_no = soup.find_all(True, {'class':['flex-col', 'reset-width-below-tablet', 'item']})[0].find_all('span')[0].get_text()

    # get summary. if none, return empty
    case_summaries = soup.find_all('div', id='summary')
    if len(case_summaries) == 0:
        return docket_no, {'summary': 'Dismissed'}
    case_summary = case_summaries[0].get_text()
    case_details['summary'] = remove_tags(case_summary)
    
    # look for per curiam opinion
    per_curiam = soup.find_all(True,  {'data-gtm-label':['Opinions Tab - Per Curiam']})
    if len(per_curiam)>0:
        opinion = soup.find_all('div',  {'id':re.compile(r'tab-opinion-\d+')})[0]
        opinion = remove_tags(opinion.get_text())
        court_opinion_text = re.findall(r'(?<=Per Curiam.)[\w\W]+', opinion)[0].strip()
        case_details['court_opinion'] = court_opinion_text
    else:
    
        for opinion in soup.find_all('div', {'id': re.compile(r'tab-opinion-')})[1:]:

            opinion = remove_tags(opinion.get_text())

            justice_name = re.findall(r'(?<=Justice\s)\w+', opinion)[0]
            if verbose:
                print(justice_name)

            # get court opinion text
            court_opinion_text = re.findall(r'(?<=delivered the opinion of the Court.)[\w\W]+', opinion)

            if len(court_opinion_text) >0:
                justice_opinion = court_opinion_text[0].strip()
                case_details['court_opinion'] = justice_opinion
                case_details[justice_name] = justice_opinion
                if verbose:
                    print(justice_opinion)

            else:
                justice_opinion =  re.findall(r'((?<=dissenting.)[\w\W]+|(?<=concurring.)[\w\W]+)', opinion)[0].strip()
                if verbose:
                    print(justice_opinion)
                case_details[justice_name] = justice_opinion
    return docket_no, case_details

if __name__=="__main__":
    # Scrape case_urls from justia

    years = [f'https://supreme.justia.com/cases/federal/us/year/{i}.html' for i in range(2013, 2024)]
    case_urls = []

    for year_url in years:
        r = requests.get(year_url)
        soup = BeautifulSoup(r.content, 'html')
        for i in soup.find_all(True,  {'class':['color-green', 'text-soft-wrap']} ):
            case_urls.append('https://supreme.justia.com' + i.a['href'])

    # scrape cases, track errors
    case_data = dict()
    failed_urls = []
    i = 1
    for url in case_urls:
        print(f'Scraping case {i}')
        try:
            docket_no, opinions = clean_soup(url)
            assert opinions
            case_data[docket_no] = opinions
        except Exception as e:
            print(f'Failed on url {url}')
            failed_urls.append([url, str(e)])
        
        i+=1

    # Serialize case_data as json
    json_object = json.dumps(case_data, indent=4)
    
    # Writing to case_data.json
    with open("case_data.json", "w") as outfile:
        outfile.write(json_object)

    # Create chunked dataset for hugging face dataloaders

    data = []
    current = 1
    max_char = 4000
    for k,v in case_data.items():
        print(current)
        current +=1
        if v['summary'] != 'Dismissed':
            summary = re.findall(r'(?<=Justia Summary\s\s\s)[\w\W]+', v['summary'])[0]
        else:
            continue

        if v.get('court_opinion')==None:

            continue

        # remove notes from opinion
        if re.search(r'[\w\W]+(?=Notes 1 \xa0)', v['court_opinion']):
            court_opinion = re.findall(r'[\w\W]+(?=Notes 1 \xa0)', v['court_opinion'])[0]

        if len(court_opinion) + len(summary) > max_char:

            # chunk the opinions
            max_len = max_char - len(summary)

            chunk_size = int(max_len/ (math.ceil(max_len/ len(court_opinion))))
            chunk_suffix = 1
            for i in range(0, len(court_opinion), chunk_size):
                chunk = court_opinion[i:i+chunk_size]
                data.append({
                    'docket_no': k + str(chunk_suffix),
                    'summary': summary,
                    'opinion': chunk
                })

                chunk_suffix +=1
        
        else:
            data.append({
                'docket_no': k,
                'summary': summary,
                'opinion': v.get('court_opinion', '')
            })

    dataloader_formatted = dict(
        version='1.0',
        data=data
    )

    json_object = json.dumps(dataloader_formatted, indent=4)
    with open("chunked_case_data.json", "w") as outfile:
        outfile.write(json_object)