Spaces:
Sleeping
Sleeping
File size: 21,352 Bytes
6a2ca60 e58f9a0 f294685 e58f9a0 5390756 6a2ca60 af82024 5390756 e58f9a0 6a2ca60 f294685 5390756 af82024 5390756 6a2ca60 969d75c e58f9a0 f294685 e58f9a0 969d75c e58f9a0 969d75c 6a2ca60 5390756 af82024 5390756 af82024 5390756 6a2ca60 969d75c 6a2ca60 969d75c 6a2ca60 969d75c af82024 6a2ca60 af82024 6a2ca60 af82024 6a2ca60 af82024 6a2ca60 5390756 cc21aaf 6a2ca60 af82024 cc21aaf 6a2ca60 cc21aaf af82024 6a2ca60 969d75c 6a2ca60 cc21aaf 5390756 af82024 6a2ca60 5390756 cc21aaf 6a2ca60 5390756 af82024 cc21aaf 5390756 6a2ca60 969d75c cc21aaf 6a2ca60 969d75c 6a2ca60 969d75c cc21aaf 6a2ca60 5390756 6a2ca60 af82024 6a2ca60 af82024 6a2ca60 af82024 5390756 cc21aaf 5390756 af82024 5390756 af82024 5390756 6a2ca60 5390756 6a2ca60 5390756 6a2ca60 969d75c 6a2ca60 5390756 969d75c 5390756 6a2ca60 969d75c 5390756 6a2ca60 5390756 6a2ca60 af82024 5390756 969d75c 5390756 969d75c 5390756 969d75c cc21aaf af82024 cc21aaf 6a2ca60 cc21aaf 6a2ca60 af82024 5390756 af82024 5390756 af82024 5390756 6a2ca60 969d75c 6a2ca60 969d75c 6a2ca60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
#!/usr/bin/env python3
# sync_library_and_hf.py
''''
RUN BELOW FOR NEW HTML FILES TO UPDATE OLD ONES ON DFATASET REPO
python sync_library_and_hf.py --db-path library.csv --repo-id akazemian/audio-html --model-name wavcoch_audio-preds-sr=16000 --index-filename index.csv --wipe-remote --wipe-local
'''
import argparse, datetime, uuid, posixpath, sys, traceback, os, hashlib
from pathlib import Path
from typing import List, Tuple, Set
from urllib.parse import unquote
import os
import pandas as pd
import numpy as np
from huggingface_hub import (
HfApi,
hf_hub_download,
CommitOperationAdd,
CommitOperationDelete,
)
from huggingface_hub.utils import HfHubHTTPError
REQUIRED_DB_COLS = [
"id","filename","path","tags","keywords","notes","uploaded_at","category","dataset","hf_path"
]
INDEX_COLS = ["id","filename","relpath","category","dataset","tags","keywords","notes","uploaded_at"]
# --- manifest helpers ---
AUDIO_EXTS = {".wav", ".mp3"} # extend if needed: ".flac", ".ogg", etc.
def _strip_ext(name: str, exts: set[str]) -> str:
n = name
for ext in exts:
if n.lower().endswith(ext):
return n[: -len(ext)]
return n
def key_from_html_filename(fname: str) -> str:
# e.g. "foo_bar.html" -> "foo_bar"
base = Path(fname).name
if base.lower().endswith(".html"):
base = base[:-5]
return base
def key_from_manifest_filename(fname: str) -> str:
# e.g. "foo_bar.wav" or "foo_bar.mp3" -> "foo_bar"
base = Path(fname).name
return _strip_ext(base, AUDIO_EXTS)
def create_file_specific_manifest(csv_path: Path) -> pd.DataFrame:
audio_dir = "/data/atlask/BAU-Quant/val"
manifest = pd.read_csv(csv_path)
mask = manifest['dataset'].eq('TUT_urban_acoustic_scenes')
manifest['audio_category'] = np.where(mask, manifest['dataset'], manifest['audio_category'])
manifest = manifest.assign(
audio_category = manifest['audio_category'].where(~mask, manifest['dataset'])
)
# 1) Build a files dataframe
files = pd.DataFrame({"file_name": os.listdir(audio_dir)})
# keep only audio files if needed
files = files[files["file_name"].str.lower().str.endswith((".wav", ".mp3", ".flac", ".ogg", ".m4a", ".opus"))].copy()
files["file_path"] = files["file_name"].apply(lambda f: os.path.join(audio_dir, f))
# Normalize to a join key: drop extension, then strip `_chunk...`
files["key"] = (
files["file_name"]
.str.replace(r"\.[^.]+$", "", regex=True) # remove extension
.str.replace(r"_chunk.*$", "", regex=True) # remove _chunk suffix if present
)
# 2) Prepare manifest with the same key
man = manifest.copy()
# If manifest['file_name'] includes extensions / chunk suffixes, normalize the same way:
man["key"] = (
man["file_name"]
.str.replace(r"\.[^.]+$", "", regex=True)
.str.replace(r"_chunk.*$", "", regex=True)
)
# If duplicates exist in manifest for the same key, decide how to resolve:
# e.g., keep first occurrence
man = man.drop_duplicates(subset="key", keep="first")
# 3) Merge once (vectorized)
cols_to_take = ["sr", "dataset", "audio_category", "split", "duration_s"]
out = files.merge(man[["key"] + cols_to_take], on="key", how="left")
# 4) Final column order
return out[["sr", "file_name", "file_path", "dataset", "audio_category", "split"]]
def load_manifest_map(csv_path: Path) -> dict[str, tuple[str, str]]:
"""
Returns {basename_key: (dataset, category)} from the manifest.
Manifest must have columns: file_name, dataset, category
"""
# if not csv_path.exists():
# print(f"[manifest] WARNING: not found: {csv_path}")
# return {}
# dfm = pd.read_csv(csv_path)
dfm = create_file_specific_manifest(csv_path)
dfm = dfm.rename(columns={'audio_category':'category'})
required = {"file_name", "dataset", "category"}
missing = required - set(dfm.columns)
if missing:
raise ValueError(f"manifest missing columns: {sorted(missing)}")
m = {}
for _, r in dfm.iterrows():
k = key_from_manifest_filename(str(r["file_name"]))
ds = str(r["dataset"]) if pd.notna(r["dataset"]) else ""
cat = str(r["category"]) if pd.notna(r["category"]) else ""
if k and (ds or cat):
m[k] = (ds, cat)
print(f"[manifest] loaded {len(m)} keys from {csv_path}")
return m
def now_iso() -> str:
return datetime.datetime.now().isoformat(timespec="seconds")
def ensure_cols(df: pd.DataFrame, cols: list) -> pd.DataFrame:
for c in cols:
if c not in df.columns:
df[c] = ""
for c in cols:
df[c] = df[c].fillna("").astype(str)
return df[cols]
def load_db(db_path: Path) -> pd.DataFrame:
if db_path.exists():
df = pd.read_csv(db_path)
else:
df = pd.DataFrame(columns=REQUIRED_DB_COLS)
return ensure_cols(df, REQUIRED_DB_COLS)
def save_db(df: pd.DataFrame, db_path: Path):
db_path.parent.mkdir(parents=True, exist_ok=True)
df.to_csv(db_path, index=False)
def load_hf_index(repo_id: str, index_filename: str) -> Tuple[pd.DataFrame, bool]:
try:
p = hf_hub_download(repo_id=repo_id, repo_type="dataset", filename=index_filename)
df = pd.read_csv(p)
return ensure_cols(df, INDEX_COLS), True
except HfHubHTTPError as e:
if e.response is not None and e.response.status_code == 404:
return ensure_cols(pd.DataFrame(columns=INDEX_COLS), INDEX_COLS), False
raise
def relpath_posix(local_path: Path, root: Path) -> str:
rel = local_path.resolve().relative_to(root.resolve())
parts = [unquote(p) for p in rel.as_posix().split("/")]
return posixpath.join(*parts)
# --- model prefix + sharding helpers ---
def ensure_model_prefix(relpath: str, model_name: str | None) -> str:
"""
If model_name is provided and relpath doesn't start with "<model_name>/",
prepend it. Otherwise return relpath unchanged.
"""
if not model_name:
return relpath
model = model_name.strip()
if not model:
return relpath
if relpath.startswith(model + "/"):
return relpath
return f"{model}/{relpath}"
def shard_relpath_under_model(relpath: str, hexdigits: int = 2) -> str:
"""
Insert shard bucket immediately after the *model* segment (first path part).
If there is only 1 segment, just return relpath.
"""
parts = relpath.split("/")
if len(parts) < 2:
return relpath
filename = parts[-1]
bucket = hashlib.sha1(filename.encode("utf-8")).hexdigest()[:hexdigits]
# parts[0] = model, parts[1:] = rest of path
return "/".join([parts[0], bucket] + parts[1:])
def discover_new_local_htmls(reports_root: Path, df_db: pd.DataFrame) -> List[Path]:
all_htmls = list(reports_root.rglob("*.html"))
existing_paths = set(df_db["path"].astype(str))
return sorted([p for p in all_htmls if str(p) not in existing_paths])
def rows_from_files(
files: List[Path],
reports_root: Path,
manifest_map: dict[str, tuple[str,str]],
) -> pd.DataFrame:
ts = now_iso()
rows = []
for p in files:
k = key_from_html_filename(p.name)
ds, cat = manifest_map.get(k, ("", ""))
rows.append({
"id": uuid.uuid4().hex[:8],
"filename": p.name,
"path": str(p),
"tags": "",
"keywords": "",
"notes": "",
"uploaded_at": ts,
"category": cat,
"dataset": ds,
"hf_path": "",
})
return pd.DataFrame(rows, columns=REQUIRED_DB_COLS) if rows else pd.DataFrame(columns=REQUIRED_DB_COLS)
def backfill_hf_paths_by_relpath(
df_db: pd.DataFrame,
reports_root: Path,
hf_repo: str,
idx: pd.DataFrame,
model_name: str | None,
do_shard: bool,
shard_digits: int,
) -> int:
"""
For each local file path, compute the *target* repo relpath exactly as we upload it
(model prefix + optional shard). If that relpath appears in index.csv, backfill hf_path.
"""
rel_set = set(idx["relpath"].astype(str))
updated = 0
for i, p in enumerate(df_db["path"].astype(str).tolist()):
if not p:
continue
lp = Path(p)
if not lp.exists():
continue
try:
base_rp = relpath_posix(lp, reports_root) # e.g. "file.html" or "model/.../file.html"
except Exception:
continue
base_rp = ensure_model_prefix(base_rp, model_name) # ensure "<model>/..."
rp_target = shard_relpath_under_model(base_rp, shard_digits) if do_shard else base_rp
if rp_target in rel_set and not df_db.at[i, "hf_path"]:
df_db.at[i, "hf_path"] = f"hf://{hf_repo}/{rp_target}"
updated += 1
return updated
def backfill_hf_paths_by_filename(df_db: pd.DataFrame, hf_repo: str, idx: pd.DataFrame) -> int:
updated = 0
rel_by_fname = dict(zip(idx["filename"].astype(str), idx["relpath"].astype(str)))
mask = df_db["hf_path"].astype(str) == ""
for i in df_db.index[mask]:
fn = str(df_db.at[i, "filename"])
rp = rel_by_fname.get(fn)
if rp:
df_db.at[i, "hf_path"] = f"hf://{hf_repo}/{rp}"
updated += 1
return updated
def append_to_remote_index(remote_index: pd.DataFrame, new_rows: List[dict]) -> pd.DataFrame:
if not new_rows:
return remote_index
add_df = pd.DataFrame(new_rows, columns=INDEX_COLS)
merged = pd.concat([remote_index, add_df], ignore_index=True)
merged = merged.drop_duplicates(subset=["relpath"], keep="first")
return merged[INDEX_COLS]
def list_remote_relpaths(api: HfApi, repo_id: str) -> Set[str]:
files = api.list_repo_files(repo_id=repo_id, repo_type="dataset")
out = set()
for f in files:
parts = [unquote(s) for s in f.split("/")]
out.add("/".join(parts))
return out
def commit_ops_in_batches(api: HfApi, repo_id: str, ops: List, batch_size: int, msg_prefix: str):
if not ops:
return
for start in range(0, len(ops), batch_size):
batch = ops[start:start+batch_size]
api.create_commit(
repo_id=repo_id,
repo_type="dataset",
operations=batch,
commit_message=f"{msg_prefix} (n={len(batch)})"
)
# ---------- Wipe helpers ----------
def wipe_remote_dataset(api: HfApi, repo_id: str, keep: Set[str], batch_size: int, dry: bool):
files = api.list_repo_files(repo_id=repo_id, repo_type="dataset")
to_delete = []
for f in files:
f_norm = "/".join([unquote(s) for s in f.split("/")])
if f_norm in keep:
continue
to_delete.append(CommitOperationDelete(path_in_repo=f_norm))
if not to_delete:
print("[wipe] nothing to delete")
return
if dry:
print(f"[dry-run] would delete {len(to_delete)} files from {repo_id}")
return
print(f"[wipe] deleting {len(to_delete)} files from {repo_id} ...")
commit_ops_in_batches(api, repo_id, to_delete, batch_size, "Wipe dataset")
def main():
ap = argparse.ArgumentParser(description="Reset and sync HF dataset from local HTMLs (optionally wipe repo), shard to avoid 10k/dir limit, update index.csv, backfill hf_path.")
ap.add_argument("--reports-root", default='/data/atlask/Model-Preds-Html/AudioSet-Audio', type=Path, help="Root containing {model}/.../*.html (or just the model dir)")
ap.add_argument("--db-path", required=True, type=Path, help="Path to local library.csv")
ap.add_argument("--manifest-csv", default="/data/atlask/BAU-Quant/manifest_val.csv", type=Path, help="CSV with columns file_name,dataset,category; matched by basename without extension")
ap.add_argument("--repo-id", required=True, help="HF dataset repo id, e.g. USER/audio-html")
ap.add_argument("--index-filename", default="index.csv", help="Index filename in the HF dataset (default: index.csv)")
ap.add_argument("--batch-size", type=int, default=1000, help="Files per commit when uploading to HF")
ap.add_argument("--dry-run", action="store_true", help="Print actions; do not write or push")
ap.add_argument("--commit-message", default="Sync: add new HTMLs + update index.csv", help="Commit message prefix")
# Reset/Wipe options
ap.add_argument("--wipe-remote", action="store_true", help="Delete ALL files in the HF dataset before uploading")
ap.add_argument("--keep", action="append", default=[], help="Paths to keep during wipe (can be passed multiple times)")
ap.add_argument("--wipe-local", action="store_true", help="Delete local library.csv before scanning")
# SHARD controls
ap.add_argument("--no-shard", action="store_true", help="Disable sharding (NOT recommended; risk 10k/dir limit)")
ap.add_argument("--shard-hexdigits", type=int, default=2, help="Digits of SHA1 prefix for bucket (default: 2 -> 256 buckets)")
# Model prefix
ap.add_argument("--model-name", type=str, default=None,
help="Force all uploaded relpaths to be prefixed with this model folder (use if reports-root is already inside the model).")
args = ap.parse_args()
reports_root: Path = args.reports_root
db_path: Path = args.db_path
hf_repo: str = args.repo_id
index_filename: str = args.index_filename
bs: int = args.batch_size
dry: bool = args.dry_run
do_shard: bool = not args.no_shard
shard_digits: int = max(1, args.shard_hexdigits)
keep_set: Set[str] = set(args.keep)
print(f"[config] reports_root={reports_root}")
print(f"[config] db_path={db_path}")
print(f"[config] repo_id={hf_repo}, index={index_filename}")
print(f"[config] batch_size={bs}, dry_run={dry}, shard={'on' if do_shard else 'off'}:{shard_digits}")
if args.model_name:
print(f"[config] model_name={args.model_name}")
if keep_set:
print(f"[config] wipe keep-list: {sorted(keep_set)}")
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER") != "1":
print("[tip] For faster uploads, install `hf-transfer` and set HF_HUB_ENABLE_HF_TRANSFER=1")
api = HfApi()
manifest_map = load_manifest_map(args.manifest_csv)
# 0) Optional wipes
if args.wipe_remote:
wipe_remote_dataset(api, hf_repo, keep_set, bs, dry)
if args.wipe_local and db_path.exists():
if dry:
print(f"[dry-run] would remove local DB: {db_path}")
else:
print(f"[wipe] removing local DB: {db_path}")
try:
db_path.unlink()
except FileNotFoundError:
pass
# 1) Load DB (fresh if wiped)
df_db = load_db(db_path)
# 2) Append new local *.html files to DB
new_local_files = discover_new_local_htmls(reports_root, df_db)
print(f"[scan] new local HTML files: {len(new_local_files)}")
if new_local_files:
df_new = rows_from_files(new_local_files, reports_root, manifest_map)
df_db = pd.concat([df_db, df_new], ignore_index=True)
# 3) Load remote index + list files (will be empty after wipe)
remote_index, existed = load_hf_index(hf_repo, index_filename)
print(f"[index] remote exists={existed}, rows={len(remote_index)}")
remote_files_set = list_remote_relpaths(api, hf_repo)
print(f"[remote] files in repo: {len(remote_files_set)}")
# 4) Backfill hf_path (now uses model prefix + shard)
n1 = backfill_hf_paths_by_relpath(
df_db, reports_root, hf_repo, remote_index,
model_name=args.model_name,
do_shard=do_shard,
shard_digits=shard_digits,
)
n2 = backfill_hf_paths_by_filename(df_db, hf_repo, remote_index)
print(f"[hf] backfilled hf_path: by_relpath={n1}, by_filename={n2}")
# 5) Decide which rows to upload (and target relpaths, sharded under model)
need_upload = []
for i, r in df_db.iterrows():
# If you've wiped, hf_path will be empty; we only upload files that exist locally
local = Path(str(r["path"]))
if (not local) or (not local.exists()):
continue
try:
base_rp = relpath_posix(local, reports_root) # "file.html" or "model/.../file.html"
except Exception:
continue
base_rp = ensure_model_prefix(base_rp, args.model_name) # ensure "<model>/..."
rp = shard_relpath_under_model(base_rp, shard_digits) if do_shard else base_rp
if rp not in remote_files_set:
need_upload.append((i, r.to_dict(), rp))
print(f"[hf] rows needing upload (not present in repo): {len(need_upload)}")
ops: List[CommitOperationAdd] = []
new_index_rows: List[dict] = []
for i, rdict, rp in need_upload:
local = Path(rdict["path"])
if not local.exists():
continue
ops.append(CommitOperationAdd(path_in_repo=rp, path_or_fileobj=str(local)))
# derive from HTML filename using manifest map
k = key_from_html_filename(rdict["filename"])
ds, cat = manifest_map.get(k, (str(rdict["dataset"]), str(rdict["category"])))
new_index_rows.append({
"id": rdict["id"] or uuid.uuid4().hex[:8],
"filename": rdict["filename"],
"relpath": rp,
"category": cat,
"dataset": ds,
"tags": rdict["tags"],
"keywords": rdict["keywords"],
"notes": rdict["notes"],
"uploaded_at": rdict["uploaded_at"] or now_iso(),
})
# 6) Upload in batches
if ops and not dry:
print(f"[hf] uploading {len(ops)} files in batches of {bs}...")
commit_ops_in_batches(api, hf_repo, ops, bs, args.commit_message)
remote_files_set = list_remote_relpaths(api, hf_repo) # refresh
elif ops and dry:
print(f"[dry-run] would upload {len(ops)} files")
# 7) Compose index.csv (fresh if wiped)
current_index_rel = set(remote_index["relpath"].astype(str))
current_index_rel.update([row["relpath"] for row in new_index_rows])
missing_in_index = [rp for rp in remote_files_set if rp.endswith(".html") and rp not in current_index_rel]
if missing_in_index:
print(f"[index] adding {len(missing_in_index)} repo files that were missing from index.csv")
for rp in missing_in_index:
fname = Path(rp).name
k = key_from_html_filename(fname)
ds, cat = manifest_map.get(k, ("", ""))
new_index_rows.append({
"id": uuid.uuid4().hex[:8],
"filename": fname,
"relpath": rp,
"category": cat,
"dataset": ds,
"tags": "",
"keywords": "",
"notes": "",
"uploaded_at": now_iso(),
})
if new_index_rows or args.wipe_remote:
# If wiped, overwrite index.csv with just merged content
base_index = remote_index if not args.wipe_remote else pd.DataFrame(columns=INDEX_COLS)
merged_index = append_to_remote_index(base_index, new_index_rows)
merged_index = ensure_cols(merged_index, INDEX_COLS)
if not dry:
tmp = Path("index.updated.csv")
merged_index.to_csv(tmp, index=False)
api.create_commit(
repo_id=hf_repo,
repo_type="dataset",
operations=[CommitOperationAdd(path_in_repo=index_filename, path_or_fileobj=str(tmp))],
commit_message=f"{args.commit_message} (update {index_filename}, rows={len(merged_index)})"
)
tmp.unlink(missing_ok=True)
else:
print(f"[dry-run] would write fresh {index_filename} with {len(merged_index)} rows")
# 8) Update local hf_path for rows now on HF (sharded + model-prefixed)
for i, r in df_db.iterrows():
if str(r.get("hf_path", "")):
continue
local = str(r["path"])
if not local:
continue
p = Path(local)
if not p.exists():
continue
try:
base_rp = relpath_posix(p, reports_root)
except Exception:
continue
base_rp = ensure_model_prefix(base_rp, args.model_name)
rp = shard_relpath_under_model(base_rp, shard_digits) if do_shard else base_rp
if rp in remote_files_set:
df_db.at[i, "hf_path"] = f"hf://{hf_repo}/{rp}"
# 8.5) Backfill dataset/category in DB from manifest if missing
mask_missing = (df_db["dataset"].astype(str) == "") | (df_db["category"].astype(str) == "")
for i, r in df_db[mask_missing].iterrows():
k = key_from_html_filename(str(r["filename"]))
if k in manifest_map: # manifest_map was loaded earlier: load_manifest_map(args.manifest_csv)
ds, cat = manifest_map[k]
if not str(r["dataset"]):
df_db.at[i, "dataset"] = ds
if not str(r["category"]):
df_db.at[i, "category"] = cat
# 9) Save DB
if dry:
print("[dry-run] not writing library.csv")
else:
save_db(df_db, db_path)
print(f"[done] wrote {len(df_db)} rows to {db_path}")
if __name__ == "__main__":
try:
main()
except Exception as e:
traceback.print_exc()
sys.exit(1)
|