Spaces:
Running
Running
File size: 2,575 Bytes
6f72020 7e9d2f3 1f8126a 7e9d2f3 516f50c 1f8126a 516f50c c1a53ad 1f8126a 7e9d2f3 c1a53ad f531789 c1a53ad f5241bd c1a53ad 1d0844e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
from transformers import pipeline
from PIL import Image
import gradio as gr
import numpy as np
# Load the Hugging Face depth estimation pipelines
pipe_base = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf")
pipe_small = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf")
pipe_intel = pipeline(task="depth-estimation", model="Intel/dpt-swinv2-tiny-256")
pipe_beit = pipeline(task="depth-estimation", model="Intel/dpt-beit-base-384")
def process_and_display(pipe, output_component):
def process_image(image):
depth_map = pipe(image)["depth"]
normalized_depth = normalize_depth(depth_map)
output_component.value = normalized_depth
return process_image
def normalize_depth(depth_map):
# Normalize depth map values to range [0, 255] for visualization
normalized_depth = ((depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())) * 255
return normalized_depth.astype(np.uint8)
# Create Gradio output components for each pipeline
output_base = gr.Image(type="numpy", label="LiheYoung/depth-anything-base-hf")
output_small = gr.Image(type="numpy", label="LiheYoung/depth-anything-small-hf")
output_intel = gr.Image(type="numpy", label="Intel/dpt-swinv2-tiny-256")
output_beit = gr.Image(type="numpy", label="Intel/dpt-beit-base-384")
# Create Gradio interfaces for each pipeline
iface_base = gr.Interface(process_and_display(pipe_base, output_base), inputs=gr.Image(type="pil"), outputs=output_base, title="Depth Estimation - LiheYoung/depth-anything-base-hf")
iface_small = gr.Interface(process_and_display(pipe_small, output_small), inputs=gr.Image(type="pil"), outputs=output_small, title="Depth Estimation - LiheYoung/depth-anything-small-hf")
iface_intel = gr.Interface(process_and_display(pipe_intel, output_intel), inputs=gr.Image(type="pil"), outputs=output_intel, title="Depth Estimation - Intel/dpt-swinv2-tiny-256")
iface_beit = gr.Interface(process_and_display(pipe_beit, output_beit), inputs=gr.Image(type="pil"), outputs=output_beit, title="Depth Estimation - Intel/dpt-beit-base-384")
# Launch the Gradio interfaces
iface_base.launch()
iface_small.launch()
iface_intel.launch()
iface_beit.launch()
"""
from transformers import pipeline
from PIL import Image
import requests
# load pipe
pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf")
# load image
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
# inference
depth = pipe(image)["depth"]
""" |