File size: 5,844 Bytes
3f7cfab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import time

import pytest

from enums import source_prefix, source_postfix
from prompter import generate_prompt
from tests.utils import wrap_test_forked

example_data_point0 = dict(instruction="Summarize",
                           input="Ducks eat seeds by the lake, then swim in the lake where fish eat small animals.",
                           output="Ducks eat and swim at the lake.")

example_data_point1 = dict(instruction="Who is smarter, Einstein or Newton?",
                           output="Einstein.")

example_data_point2 = dict(input="Who is smarter, Einstein or Newton?",
                           output="Einstein.")

example_data_points = [example_data_point0, example_data_point1, example_data_point2]


@wrap_test_forked
def test_train_prompt(prompt_type='instruct', data_point=0):
    example_data_point = example_data_points[data_point]
    return generate_prompt(example_data_point, prompt_type, '', False, False, False)


@wrap_test_forked
def test_test_prompt(prompt_type='instruct', data_point=0):
    example_data_point = example_data_points[data_point]
    example_data_point.pop('output', None)
    return generate_prompt(example_data_point, prompt_type, '', False, False, False)


@wrap_test_forked
def test_test_prompt2(prompt_type='human_bot', data_point=0):
    example_data_point = example_data_points[data_point]
    example_data_point.pop('output', None)
    res = generate_prompt(example_data_point, prompt_type, '', False, False, False)
    print(res, flush=True)
    return res


prompt_fastchat = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: I'm good</s>USER: Go to the market? ASSISTANT:"""

prompt_humanbot = """<human>: Hello!\n<bot>: Hi!\n<human>: How are you?\n<bot>: I'm good\n<human>: Go to the market?\n<bot>:"""

prompt_prompt_answer = "<|prompt|>Hello!<|answer|>Hi!<|endoftext|><|prompt|>How are you?<|answer|>I'm good<|endoftext|><|prompt|>Go to the market?<|answer|>"

prompt_prompt_answer_openllama = "<|prompt|>Hello!<|answer|>Hi!</s><|prompt|>How are you?<|answer|>I'm good</s><|prompt|>Go to the market?<|answer|>"


@wrap_test_forked
@pytest.mark.parametrize("prompt_type,expected",
                         [
                             ('vicuna11', prompt_fastchat),
                             ('human_bot', prompt_humanbot),
                             ('prompt_answer', prompt_prompt_answer),
                             ('prompt_answer_openllama', prompt_prompt_answer_openllama),
                         ]
                         )
def test_prompt_with_context(prompt_type, expected):
    prompt_dict = None  # not used unless prompt_type='custom'
    langchain_mode = 'Disabled'
    chat = True
    model_max_length = 2048
    memory_restriction_level = 0
    keep_sources_in_context1 = False
    iinput = ''
    stream_output = False
    debug = False

    from prompter import Prompter
    from generate import history_to_context

    t0 = time.time()
    history = [["Hello!", "Hi!"],
               ["How are you?", "I'm good"],
               ["Go to the market?", None]
               ]
    print("duration1: %s %s" % (prompt_type, time.time() - t0), flush=True)
    t0 = time.time()
    context = history_to_context(history, langchain_mode, prompt_type, prompt_dict, chat,
                                 model_max_length, memory_restriction_level,
                                 keep_sources_in_context1)
    print("duration2: %s %s" % (prompt_type, time.time() - t0), flush=True)
    t0 = time.time()
    instruction = history[-1][0]

    # get prompt
    prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output)
    print("duration3: %s %s" % (prompt_type, time.time() - t0), flush=True)
    t0 = time.time()
    data_point = dict(context=context, instruction=instruction, input=iinput)
    prompt = prompter.generate_prompt(data_point)
    print(prompt)
    print("duration4: %s %s" % (prompt_type, time.time() - t0), flush=True)
    assert prompt == expected
    assert prompt.find(source_prefix) == -1


prompt_fastchat1 = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Go to the market? ASSISTANT:"""

prompt_humanbot1 = """<human>: Go to the market?\n<bot>:"""

prompt_prompt_answer1 = "<|prompt|>Go to the market?<|answer|>"

prompt_prompt_answer_openllama1 = "<|prompt|>Go to the market?<|answer|>"


@pytest.mark.parametrize("prompt_type,expected",
                         [
                             ('vicuna11', prompt_fastchat1),
                             ('human_bot', prompt_humanbot1),
                             ('prompt_answer', prompt_prompt_answer1),
                             ('prompt_answer_openllama', prompt_prompt_answer_openllama1),
                         ]
                         )
@wrap_test_forked
def test_prompt_with_no_context(prompt_type, expected):
    prompt_dict = None  # not used unless prompt_type='custom'
    chat = True
    iinput = ''
    stream_output = False
    debug = False

    from prompter import Prompter
    context = ''
    instruction = "Go to the market?"

    # get prompt
    prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output)
    data_point = dict(context=context, instruction=instruction, input=iinput)
    prompt = prompter.generate_prompt(data_point)
    print(prompt)
    assert prompt == expected
    assert prompt.find(source_prefix) == -1


@wrap_test_forked
def test_source():
    prompt = "Who are you?%s\nFOO\n%s" % (source_prefix, source_postfix)
    assert prompt.find(source_prefix) >= 0