File size: 136,593 Bytes
3f7cfab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
import copy
import functools
import inspect
import itertools
import json
import os
import pprint
import random
import shutil
import sys
import time
import traceback
import typing
import uuid
import filelock
import pandas as pd
import requests
import tabulate
from iterators import TimeoutIterator

from gradio_utils.css import get_css
from gradio_utils.prompt_form import make_prompt_form, make_chatbots

# This is a hack to prevent Gradio from phoning home when it gets imported
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'


def my_get(url, **kwargs):
    print('Gradio HTTP request redirected to localhost :)', flush=True)
    kwargs.setdefault('allow_redirects', True)
    return requests.api.request('get', 'http://127.0.0.1/', **kwargs)


original_get = requests.get
requests.get = my_get
import gradio as gr

requests.get = original_get


def fix_pydantic_duplicate_validators_error():
    try:
        from pydantic import class_validators

        class_validators.in_ipython = lambda: True  # type: ignore[attr-defined]
    except ImportError:
        pass


fix_pydantic_duplicate_validators_error()

from enums import DocumentChoices, no_model_str, no_lora_str, no_server_str, LangChainMode
from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js, spacing_xsm, radius_xsm, \
    text_xsm
from prompter import prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, non_hf_types, \
    get_prompt
from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \
    ping, get_short_name, get_url, makedirs, get_kwargs, remove, system_info, ping_gpu
from generate import get_model, languages_covered, evaluate, eval_func_param_names, score_qa, langchain_modes, \
    inputs_kwargs_list, scratch_base_dir, evaluate_from_str, no_default_param_names, \
    eval_func_param_names_defaults, get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context

from apscheduler.schedulers.background import BackgroundScheduler


def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True):
    if fix_latex_dollars:
        ts = text.split('```')
        for parti, part in enumerate(ts):
            inside = parti % 2 == 1
            if not inside:
                ts[parti] = ts[parti].replace('$', '﹩')
        text = '```'.join(ts)

    if fix_new_lines:
        # let Gradio handle code, since got improved recently
        ## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is.
        # ensure good visually, else markdown ignores multiple \n
        # handle code blocks
        ts = text.split('```')
        for parti, part in enumerate(ts):
            inside = parti % 2 == 1
            if not inside:
                ts[parti] = ts[parti].replace('\n', '<br>')
        text = '```'.join(ts)
    return text


def go_gradio(**kwargs):
    allow_api = kwargs['allow_api']
    is_public = kwargs['is_public']
    is_hf = kwargs['is_hf']
    memory_restriction_level = kwargs['memory_restriction_level']
    n_gpus = kwargs['n_gpus']
    admin_pass = kwargs['admin_pass']
    model_state0 = kwargs['model_state0']
    model_states = kwargs['model_states']
    score_model_state0 = kwargs['score_model_state0']
    dbs = kwargs['dbs']
    db_type = kwargs['db_type']
    visible_langchain_modes = kwargs['visible_langchain_modes']
    allow_upload_to_user_data = kwargs['allow_upload_to_user_data']
    allow_upload_to_my_data = kwargs['allow_upload_to_my_data']
    enable_sources_list = kwargs['enable_sources_list']
    enable_url_upload = kwargs['enable_url_upload']
    enable_text_upload = kwargs['enable_text_upload']
    use_openai_embedding = kwargs['use_openai_embedding']
    hf_embedding_model = kwargs['hf_embedding_model']
    enable_captions = kwargs['enable_captions']
    captions_model = kwargs['captions_model']
    enable_ocr = kwargs['enable_ocr']
    caption_loader = kwargs['caption_loader']

    # easy update of kwargs needed for evaluate() etc.
    queue = True
    allow_upload = allow_upload_to_user_data or allow_upload_to_my_data
    kwargs.update(locals())

    if 'mbart-' in kwargs['model_lower']:
        instruction_label_nochat = "Text to translate"
    else:
        instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \
                                   " use Enter for multiple input lines)"

    title = 'h2oGPT'
    more_info = """<iframe src="https://ghbtns.com/github-btn.html?user=h2oai&repo=h2ogpt&type=star&count=true&size=small" frameborder="0" scrolling="0" width="250" height="20" title="GitHub"></iframe><small><a href="https://github.com/h2oai/h2ogpt">h2oGPT</a>  <a href="https://github.com/h2oai/h2o-llmstudio">H2O LLM Studio</a><br><a href="https://huggingface.co/h2oai">🤗 Models</a>"""
    if kwargs['verbose']:
        description = f"""Model {kwargs['base_model']} Instruct dataset.
                      For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
                      Command: {str(' '.join(sys.argv))}
                      Hash: {get_githash()}
                      """
    else:
        description = more_info
    description_bottom = "If this host is busy, try [LLaMa 65B](https://llama.h2o.ai), [Falcon 40B](https://gpt.h2o.ai), [Falcon 40B](http://falcon.h2o.ai), [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) or [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)<br>"
    description_bottom += """<p>By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md)</p>"""
    if is_hf:
        description_bottom += '''<a href="https://huggingface.co/spaces/h2oai/h2ogpt-chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" style="white-space: nowrap" alt="Duplicate Space"></a>'''

    if kwargs['verbose']:
        task_info_md = f"""
        ### Task: {kwargs['task_info']}"""
    else:
        task_info_md = ''

    css_code = get_css(kwargs)

    if kwargs['gradio_offline_level'] >= 0:
        # avoid GoogleFont that pulls from internet
        if kwargs['gradio_offline_level'] == 1:
            # front end would still have to download fonts or have cached it at some point
            base_font = 'Source Sans Pro'
        else:
            base_font = 'Helvetica'
        theme_kwargs = dict(font=(base_font, 'ui-sans-serif', 'system-ui', 'sans-serif'),
                            font_mono=('IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'))
    else:
        theme_kwargs = dict()
    if kwargs['gradio_size'] == 'xsmall':
        theme_kwargs.update(dict(spacing_size=spacing_xsm, text_size=text_xsm, radius_size=radius_xsm))
    elif kwargs['gradio_size'] == 'small':
        theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_sm, text_size=gr.themes.sizes.text_sm,
                                 radius_size=gr.themes.sizes.spacing_sm))
    elif kwargs['gradio_size'] == 'large':
        theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_lg, text_size=gr.themes.sizes.text_lg),
                            radius_size=gr.themes.sizes.spacing_lg)
    elif kwargs['gradio_size'] == 'medium':
        theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_md, text_size=gr.themes.sizes.text_md,
                                 radius_size=gr.themes.sizes.spacing_md))

    theme = H2oTheme(**theme_kwargs) if kwargs['h2ocolors'] else SoftTheme(**theme_kwargs)
    demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False)
    callback = gr.CSVLogger()

    model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options']
    if kwargs['base_model'].strip() not in model_options:
        model_options = [kwargs['base_model'].strip()] + model_options
    lora_options = kwargs['extra_lora_options']
    if kwargs['lora_weights'].strip() not in lora_options:
        lora_options = [kwargs['lora_weights'].strip()] + lora_options
    server_options = kwargs['extra_server_options']
    if kwargs['inference_server'].strip() not in server_options:
        server_options = [kwargs['inference_server'].strip()] + server_options
    if os.getenv('OPENAI_API_KEY'):
        if 'openai_chat' not in server_options:
            server_options += ['openai_chat']
        if 'openai' not in server_options:
            server_options += ['openai']

    # always add in no lora case
    # add fake space so doesn't go away in gradio dropdown
    model_options = [no_model_str] + model_options
    lora_options = [no_lora_str] + lora_options
    server_options = [no_server_str] + server_options
    # always add in no model case so can free memory
    # add fake space so doesn't go away in gradio dropdown

    # transcribe, will be detranscribed before use by evaluate()
    if not kwargs['base_model'].strip():
        kwargs['base_model'] = no_model_str

    if not kwargs['lora_weights'].strip():
        kwargs['lora_weights'] = no_lora_str

    if not kwargs['inference_server'].strip():
        kwargs['inference_server'] = no_server_str

    # transcribe for gradio
    kwargs['gpu_id'] = str(kwargs['gpu_id'])

    no_model_msg = 'h2oGPT [   !!! Please Load Model in Models Tab !!!   ]'
    output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get(
        'base_model') else no_model_msg
    output_label0_model2 = no_model_msg

    default_kwargs = {k: kwargs[k] for k in eval_func_param_names_defaults}
    for k in no_default_param_names:
        default_kwargs[k] = ''

    def dummy_fun(x):
        # need dummy function to block new input from being sent until output is done,
        # else gets input_list at time of submit that is old, and shows up as truncated in chatbot
        return x

    with demo:
        # avoid actual model/tokenizer here or anything that would be bad to deepcopy
        # https://github.com/gradio-app/gradio/issues/3558
        model_state = gr.State(
            dict(model='model', tokenizer='tokenizer', device=kwargs['device'],
                 base_model=kwargs['base_model'],
                 tokenizer_base_model=kwargs['tokenizer_base_model'],
                 lora_weights=kwargs['lora_weights'],
                 inference_server=kwargs['inference_server'],
                 prompt_type=kwargs['prompt_type'],
                 prompt_dict=kwargs['prompt_dict'],
                 )
        )
        model_state2 = gr.State(kwargs['model_state_none'].copy())
        model_options_state = gr.State([model_options])
        lora_options_state = gr.State([lora_options])
        server_options_state = gr.State([server_options])
        my_db_state = gr.State([None, None])
        chat_state = gr.State({})
        # make user default first and default choice, dedup
        docs_state00 = kwargs['document_choice'] + [x.name for x in list(DocumentChoices)]
        docs_state0 = []
        [docs_state0.append(x) for x in docs_state00 if x not in docs_state0]
        docs_state = gr.State(docs_state0)  # first is chosen as default
        gr.Markdown(f"""
            {get_h2o_title(title, description) if kwargs['h2ocolors'] else get_simple_title(title, description)}
            """)

        # go button visible if
        base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0']
        go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary")

        nas = ' '.join(['NA'] * len(kwargs['model_states']))
        res_value = "Response Score: NA" if not kwargs[
            'model_lock'] else "Response Scores: %s" % nas

        normal_block = gr.Row(visible=not base_wanted)
        with normal_block:
            with gr.Tabs():
                with gr.Row():
                    col_nochat = gr.Column(visible=not kwargs['chat'])
                    with col_nochat:  # FIXME: for model comparison, and check rest
                        if kwargs['langchain_mode'] == 'Disabled':
                            text_output_nochat = gr.Textbox(lines=5, label=output_label0, show_copy_button=True)
                        else:
                            # text looks a bit worse, but HTML links work
                            text_output_nochat = gr.HTML(label=output_label0)
                        instruction_nochat = gr.Textbox(
                            lines=kwargs['input_lines'],
                            label=instruction_label_nochat,
                            placeholder=kwargs['placeholder_instruction'],
                        )
                        iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction",
                                                   placeholder=kwargs['placeholder_input'])
                        submit_nochat = gr.Button("Submit")
                        flag_btn_nochat = gr.Button("Flag")
                        with gr.Column(visible=kwargs['score_model']):
                            score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)

                    col_chat = gr.Column(visible=kwargs['chat'])
                    with col_chat:
                        instruction, submit, stop_btn = make_prompt_form(kwargs)
                        text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2,
                                                                                **kwargs)

                        with gr.Row():
                            clear = gr.Button("Save Chat / New Chat")
                            flag_btn = gr.Button("Flag")
                            with gr.Column(visible=kwargs['score_model']):
                                score_text = gr.Textbox(res_value,
                                                        show_label=False,
                                                        visible=True)
                                score_text2 = gr.Textbox("Response Score2: NA", show_label=False,
                                                         visible=False and not kwargs['model_lock'])
                            retry_btn = gr.Button("Regenerate")
                            undo = gr.Button("Undo")
                    submit_nochat_api = gr.Button("Submit nochat API", visible=False)
                    inputs_dict_str = gr.Textbox(label='API input for nochat', show_label=False, visible=False)
                    text_output_nochat_api = gr.Textbox(lines=5, label='API nochat output', visible=False,
                                                        show_copy_button=True)
                with gr.TabItem("Documents"):
                    langchain_readme = get_url('https://github.com/h2oai/h2ogpt/blob/main/docs/README_LangChain.md',
                                               from_str=True)
                    gr.HTML(value=f"""LangChain Support Disabled<p>
                            Run:<p>
                            <code>
                            python generate.py --langchain_mode=MyData
                            </code>
                            <p>
                            For more options see: {langchain_readme}""",
                            visible=kwargs['langchain_mode'] == 'Disabled', interactive=False)
                    data_row1 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled')
                    with data_row1:
                        if is_hf:
                            # don't show 'wiki' since only usually useful for internal testing at moment
                            no_show_modes = ['Disabled', 'wiki']
                        else:
                            no_show_modes = ['Disabled']
                        allowed_modes = visible_langchain_modes.copy()
                        allowed_modes = [x for x in allowed_modes if x in dbs]
                        allowed_modes += ['ChatLLM', 'LLM']
                        if allow_upload_to_my_data and 'MyData' not in allowed_modes:
                            allowed_modes += ['MyData']
                        if allow_upload_to_user_data and 'UserData' not in allowed_modes:
                            allowed_modes += ['UserData']
                        langchain_mode = gr.Radio(
                            [x for x in langchain_modes if x in allowed_modes and x not in no_show_modes],
                            value=kwargs['langchain_mode'],
                            label="Data Collection of Sources",
                            visible=kwargs['langchain_mode'] != 'Disabled')
                    data_row2 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled')
                    with data_row2:
                        with gr.Column(scale=50):
                            document_choice = gr.Dropdown(docs_state.value,
                                                          label="Choose Subset of Doc(s) in Collection [click get sources to update]",
                                                          value=docs_state.value[0],
                                                          interactive=True,
                                                          multiselect=True,
                                                          )
                        with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list):
                            get_sources_btn = gr.Button(value="Get Sources", scale=0, size='sm')
                            show_sources_btn = gr.Button(value="Show Sources", scale=0, size='sm')
                            refresh_sources_btn = gr.Button(value="Refresh Sources", scale=0, size='sm')

                    # import control
                    if kwargs['langchain_mode'] != 'Disabled':
                        from gpt_langchain import file_types, have_arxiv
                    else:
                        have_arxiv = False
                        file_types = []

                    upload_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload,
                                        equal_height=False)
                    with upload_row:
                        with gr.Column():
                            file_types_str = '[' + ' '.join(file_types) + ']'
                            fileup_output = gr.File(label=f'Upload {file_types_str}',
                                                    file_types=file_types,
                                                    file_count="multiple",
                                                    elem_id="warning", elem_classes="feedback")
                            with gr.Row():
                                add_to_shared_db_btn = gr.Button("Add File(s) to UserData",
                                                                 visible=allow_upload_to_user_data,
                                                                 elem_id='small_btn')
                                add_to_my_db_btn = gr.Button("Add File(s) to Scratch MyData",
                                                             visible=allow_upload_to_my_data and
                                                                     allow_upload_to_user_data,
                                                             elem_id='small_btn' if allow_upload_to_user_data else None,
                                                             size='sm' if not allow_upload_to_user_data else None)
                        with gr.Column(
                                visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload):
                            url_label = 'URL (http/https) or ArXiv:' if have_arxiv else 'URL (http/https)'
                            url_text = gr.Textbox(label=url_label,
                                                  placeholder="Click Add to Submit" if
                                                  allow_upload_to_my_data and
                                                  allow_upload_to_user_data else
                                                  "Enter to Submit",
                                                  max_lines=1,
                                                  interactive=True)
                            with gr.Row():
                                url_user_btn = gr.Button(value='Add URL content to Shared UserData',
                                                         visible=allow_upload_to_user_data and allow_upload_to_my_data,
                                                         elem_id='small_btn')
                                url_my_btn = gr.Button(value='Add URL content to Scratch MyData',
                                                       visible=allow_upload_to_my_data and allow_upload_to_user_data,
                                                       elem_id='small_btn' if allow_upload_to_user_data else None,
                                                       size='sm' if not allow_upload_to_user_data else None)
                        with gr.Column(
                                visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload):
                            user_text_text = gr.Textbox(label='Paste Text [Shift-Enter more lines]',
                                                        placeholder="Click Add to Submit" if
                                                        allow_upload_to_my_data and
                                                        allow_upload_to_user_data else
                                                        "Enter to Submit, Shift-Enter for more lines",
                                                        interactive=True)
                            with gr.Row():
                                user_text_user_btn = gr.Button(value='Add Text to Shared UserData',
                                                               visible=allow_upload_to_user_data and allow_upload_to_my_data,
                                                               elem_id='small_btn')
                                user_text_my_btn = gr.Button(value='Add Text to Scratch MyData',
                                                             visible=allow_upload_to_my_data and allow_upload_to_user_data,
                                                             elem_id='small_btn' if allow_upload_to_user_data else None,
                                                             size='sm' if not allow_upload_to_user_data else None)
                        with gr.Column(visible=False):
                            # WIP:
                            with gr.Row(visible=False, equal_height=False):
                                github_textbox = gr.Textbox(label="Github URL")
                                with gr.Row(visible=True):
                                    github_shared_btn = gr.Button(value="Add Github to Shared UserData",
                                                                  visible=allow_upload_to_user_data,
                                                                  elem_id='small_btn')
                                    github_my_btn = gr.Button(value="Add Github to Scratch MyData",
                                                              visible=allow_upload_to_my_data, elem_id='small_btn')
                    sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list,
                                         equal_height=False)
                    with sources_row:
                        with gr.Column(scale=1):
                            file_source = gr.File(interactive=False,
                                                  label="Download File w/Sources [click get sources to make file]")
                        with gr.Column(scale=2):
                            sources_text = gr.HTML(label='Sources Added', interactive=False)

                with gr.TabItem("Chat History"):
                    with gr.Row():
                        if 'mbart-' in kwargs['model_lower']:
                            src_lang = gr.Dropdown(list(languages_covered().keys()),
                                                   value=kwargs['src_lang'],
                                                   label="Input Language")
                            tgt_lang = gr.Dropdown(list(languages_covered().keys()),
                                                   value=kwargs['tgt_lang'],
                                                   label="Output Language")
                    radio_chats = gr.Radio(value=None, label="Saved Chats", visible=True, interactive=True,
                                           type='value')
                    with gr.Row():
                        clear_chat_btn = gr.Button(value="Clear Chat", visible=True, size='sm')
                        export_chats_btn = gr.Button(value="Export Chats to Download", size='sm')
                        remove_chat_btn = gr.Button(value="Remove Selected Chat", visible=True, size='sm')
                        add_to_chats_btn = gr.Button("Import Chats from Upload", size='sm')
                    with gr.Row():
                        chats_file = gr.File(interactive=False, label="Download Exported Chats")
                        chatsup_output = gr.File(label="Upload Chat File(s)",
                                                 file_types=['.json'],
                                                 file_count='multiple',
                                                 elem_id="warning", elem_classes="feedback")

                with gr.TabItem("Expert"):
                    with gr.Row():
                        with gr.Column():
                            stream_output = gr.components.Checkbox(label="Stream output",
                                                                   value=kwargs['stream_output'])
                            prompt_type = gr.Dropdown(prompt_types_strings,
                                                      value=kwargs['prompt_type'], label="Prompt Type",
                                                      visible=not kwargs['model_lock'],
                                                      interactive=not is_public,
                                                      )
                            prompt_type2 = gr.Dropdown(prompt_types_strings,
                                                       value=kwargs['prompt_type'], label="Prompt Type Model 2",
                                                       visible=False and not kwargs['model_lock'],
                                                       interactive=not is_public)
                            do_sample = gr.Checkbox(label="Sample",
                                                    info="Enable sampler, required for use of temperature, top_p, top_k",
                                                    value=kwargs['do_sample'])
                            temperature = gr.Slider(minimum=0.01, maximum=2,
                                                    value=kwargs['temperature'],
                                                    label="Temperature",
                                                    info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)")
                            top_p = gr.Slider(minimum=1e-3, maximum=1.0 - 1e-3,
                                              value=kwargs['top_p'], label="Top p",
                                              info="Cumulative probability of tokens to sample from")
                            top_k = gr.Slider(
                                minimum=1, maximum=100, step=1,
                                value=kwargs['top_k'], label="Top k",
                                info='Num. tokens to sample from'
                            )
                            # FIXME: https://github.com/h2oai/h2ogpt/issues/106
                            if os.getenv('TESTINGFAIL'):
                                max_beams = 8 if not (memory_restriction_level or is_public) else 1
                            else:
                                max_beams = 1
                            num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
                                                  value=min(max_beams, kwargs['num_beams']), label="Beams",
                                                  info="Number of searches for optimal overall probability.  "
                                                       "Uses more GPU memory/compute",
                                                  interactive=False)
                            max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs)
                            max_new_tokens = gr.Slider(
                                minimum=1, maximum=max_max_new_tokens, step=1,
                                value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
                            )
                            min_new_tokens = gr.Slider(
                                minimum=0, maximum=max_max_new_tokens, step=1,
                                value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
                            )
                            max_new_tokens2 = gr.Slider(
                                minimum=1, maximum=max_max_new_tokens, step=1,
                                value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2",
                                visible=False and not kwargs['model_lock'],
                            )
                            min_new_tokens2 = gr.Slider(
                                minimum=0, maximum=max_max_new_tokens, step=1,
                                value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2",
                                visible=False and not kwargs['model_lock'],
                            )
                            early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
                                                         value=kwargs['early_stopping'])
                            max_time = gr.Slider(minimum=0, maximum=kwargs['max_max_time'], step=1,
                                                 value=min(kwargs['max_max_time'],
                                                           kwargs['max_time']), label="Max. time",
                                                 info="Max. time to search optimal output.")
                            repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
                                                           value=kwargs['repetition_penalty'],
                                                           label="Repetition Penalty")
                            num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
                                                             value=kwargs['num_return_sequences'],
                                                             label="Number Returns", info="Must be <= num_beams",
                                                             interactive=not is_public)
                            iinput = gr.Textbox(lines=4, label="Input",
                                                placeholder=kwargs['placeholder_input'],
                                                interactive=not is_public)
                            context = gr.Textbox(lines=3, label="System Pre-Context",
                                                 info="Directly pre-appended without prompt processing",
                                                 interactive=not is_public)
                            chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
                                                          visible=not kwargs['model_lock'],
                                                          interactive=not is_public,
                                                          )
                            count_chat_tokens_btn = gr.Button(value="Count Chat Tokens",
                                                              visible=not is_public and not kwargs['model_lock'],
                                                              interactive=not is_public)
                            chat_token_count = gr.Textbox(label="Chat Token Count", value=None,
                                                          visible=not is_public and not kwargs['model_lock'],
                                                          interactive=False)
                            chunk = gr.components.Checkbox(value=kwargs['chunk'],
                                                           label="Whether to chunk documents",
                                                           info="For LangChain",
                                                           visible=kwargs['langchain_mode'] != 'Disabled',
                                                           interactive=not is_public)
                            min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public)
                            top_k_docs = gr.Slider(minimum=min_top_k_docs, maximum=max_top_k_docs, step=1,
                                                   value=kwargs['top_k_docs'],
                                                   label=label_top_k_docs,
                                                   info="For LangChain",
                                                   visible=kwargs['langchain_mode'] != 'Disabled',
                                                   interactive=not is_public)
                            chunk_size = gr.Number(value=kwargs['chunk_size'],
                                                   label="Chunk size for document chunking",
                                                   info="For LangChain (ignored if chunk=False)",
                                                   minimum=128,
                                                   maximum=2048,
                                                   visible=kwargs['langchain_mode'] != 'Disabled',
                                                   interactive=not is_public,
                                                   precision=0)

                with gr.TabItem("Models"):
                    model_lock_msg = gr.Textbox(lines=1, label="Model Lock Notice",
                                                placeholder="Started in model_lock mode, no model changes allowed.",
                                                visible=bool(kwargs['model_lock']), interactive=False)
                    load_msg = "Load-Unload Model/LORA [unload works if did not use --base_model]" if not is_public \
                        else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
                    load_msg2 = "Load-Unload Model/LORA 2 [unload works if did not use --base_model]" if not is_public \
                        else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2"
                    variant_load_msg = 'primary' if not is_public else 'secondary'
                    compare_checkbox = gr.components.Checkbox(label="Compare Mode",
                                                              value=kwargs['model_lock'],
                                                              visible=not is_public and not kwargs['model_lock'])
                    with gr.Row():
                        n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
                        with gr.Column():
                            with gr.Row():
                                with gr.Column(scale=20, visible=not kwargs['model_lock']):
                                    model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model",
                                                               value=kwargs['base_model'])
                                    lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
                                                              value=kwargs['lora_weights'], visible=kwargs['show_lora'])
                                    server_choice = gr.Dropdown(server_options_state.value[0], label="Choose Server",
                                                                value=kwargs['inference_server'], visible=not is_public)
                                with gr.Column(scale=1, visible=not kwargs['model_lock']):
                                    load_model_button = gr.Button(load_msg, variant=variant_load_msg, scale=0,
                                                                  size='sm', interactive=not is_public)
                                    model_load8bit_checkbox = gr.components.Checkbox(
                                        label="Load 8-bit [requires support]",
                                        value=kwargs['load_8bit'], interactive=not is_public)
                                    model_infer_devices_checkbox = gr.components.Checkbox(
                                        label="Choose Devices [If not Checked, use all GPUs]",
                                        value=kwargs['infer_devices'], interactive=not is_public)
                                    model_gpu = gr.Dropdown(n_gpus_list,
                                                            label="GPU ID [-1 = all GPUs, if Choose is enabled]",
                                                            value=kwargs['gpu_id'], interactive=not is_public)
                                    model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'],
                                                            interactive=False)
                                    lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
                                                           visible=kwargs['show_lora'], interactive=False)
                                    server_used = gr.Textbox(label="Current Server",
                                                             value=kwargs['inference_server'],
                                                             visible=bool(kwargs['inference_server']) and not is_public,
                                                             interactive=False)
                                    prompt_dict = gr.Textbox(label="Prompt (or Custom)",
                                                             value=pprint.pformat(kwargs['prompt_dict'], indent=4),
                                                             interactive=not is_public, lines=4)
                        col_model2 = gr.Column(visible=False)
                        with col_model2:
                            with gr.Row():
                                with gr.Column(scale=20, visible=not kwargs['model_lock']):
                                    model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
                                                                value=no_model_str)
                                    lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
                                                               value=no_lora_str,
                                                               visible=kwargs['show_lora'])
                                    server_choice2 = gr.Dropdown(server_options_state.value[0], label="Choose Server 2",
                                                                 value=no_server_str,
                                                                 visible=not is_public)
                                with gr.Column(scale=1, visible=not kwargs['model_lock']):
                                    load_model_button2 = gr.Button(load_msg2, variant=variant_load_msg, scale=0,
                                                                   size='sm', interactive=not is_public)
                                    model_load8bit_checkbox2 = gr.components.Checkbox(
                                        label="Load 8-bit 2 [requires support]",
                                        value=kwargs['load_8bit'], interactive=not is_public)
                                    model_infer_devices_checkbox2 = gr.components.Checkbox(
                                        label="Choose Devices 2 [If not Checked, use all GPUs]",
                                        value=kwargs[
                                            'infer_devices'], interactive=not is_public)
                                    model_gpu2 = gr.Dropdown(n_gpus_list,
                                                             label="GPU ID 2 [-1 = all GPUs, if choose is enabled]",
                                                             value=kwargs['gpu_id'], interactive=not is_public)
                                    # no model/lora loaded ever in model2 by default
                                    model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str,
                                                             interactive=False)
                                    lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str,
                                                            visible=kwargs['show_lora'], interactive=False)
                                    server_used2 = gr.Textbox(label="Current Server 2", value=no_server_str,
                                                              interactive=False,
                                                              visible=not is_public)
                                    prompt_dict2 = gr.Textbox(label="Prompt (or Custom) 2",
                                                              value=pprint.pformat(kwargs['prompt_dict'], indent=4),
                                                              interactive=not is_public, lines=4)
                    with gr.Row(visible=not kwargs['model_lock']):
                        with gr.Column(scale=50):
                            new_model = gr.Textbox(label="New Model name/path", interactive=not is_public)
                        with gr.Column(scale=50):
                            new_lora = gr.Textbox(label="New LORA name/path", visible=kwargs['show_lora'],
                                                  interactive=not is_public)
                        with gr.Column(scale=50):
                            new_server = gr.Textbox(label="New Server url:port", interactive=not is_public)
                        with gr.Row():
                            add_model_lora_server_button = gr.Button("Add new Model, Lora, Server url:port", scale=0,
                                                                     size='sm', interactive=not is_public)
                with gr.TabItem("System"):
                    admin_row = gr.Row()
                    with admin_row:
                        admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public)
                        admin_btn = gr.Button(value="Admin Access", visible=is_public)
                    system_row = gr.Row(visible=not is_public)
                    with system_row:
                        with gr.Column():
                            with gr.Row():
                                system_btn = gr.Button(value='Get System Info')
                                system_text = gr.Textbox(label='System Info', interactive=False, show_copy_button=True)
                            with gr.Row():
                                system_input = gr.Textbox(label='System Info Dict Password', interactive=True,
                                                          visible=not is_public)
                                system_btn2 = gr.Button(value='Get System Info Dict', visible=not is_public)
                                system_text2 = gr.Textbox(label='System Info Dict', interactive=False,
                                                          visible=not is_public, show_copy_button=True)
                            with gr.Row():
                                system_btn3 = gr.Button(value='Get Hash', visible=not is_public)
                                system_text3 = gr.Textbox(label='Hash', interactive=False,
                                                          visible=not is_public, show_copy_button=True)

                            with gr.Row():
                                zip_btn = gr.Button("Zip")
                                zip_text = gr.Textbox(label="Zip file name", interactive=False)
                                file_output = gr.File(interactive=False, label="Zip file to Download")
                            with gr.Row():
                                s3up_btn = gr.Button("S3UP")
                                s3up_text = gr.Textbox(label='S3UP result', interactive=False)
                with gr.TabItem("Disclaimers"):
                    description = ""
                    description += """<p><b> DISCLAIMERS: </b><ul><i><li>The model was trained on The Pile and other data, which may contain objectionable content.  Use at own risk.</i></li>"""
                    if kwargs['load_8bit']:
                        description += """<i><li> Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.</i></li>"""
                    description += """<i><li>Conversations may be used to improve h2oGPT.  Do not share sensitive information.</i></li>"""
                    if 'h2ogpt-research' in kwargs['base_model']:
                        description += """<i><li>Research demonstration only, not used for commercial purposes.</i></li>"""
                    description += """<i><li>By using h2oGPT, you accept our <a href="https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md">Terms of Service</a></i></li></ul></p>"""
                    gr.Markdown(value=description, show_label=False, interactive=False)

        gr.Markdown(f"""
            {description_bottom}
            {task_info_md}
            """)

        # Get flagged data
        zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
        zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text], queue=False,
                      api_name='zip_data' if allow_api else None)
        s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text, queue=False,
                       api_name='s3up_data' if allow_api else None)

        def clear_file_list():
            return None

        def make_non_interactive(*args):
            if len(args) == 1:
                return gr.update(interactive=False)
            else:
                return tuple([gr.update(interactive=False)] * len(args))

        def make_interactive(*args):
            if len(args) == 1:
                return gr.update(interactive=True)
            else:
                return tuple([gr.update(interactive=True)] * len(args))

        # Add to UserData
        update_user_db_func = functools.partial(update_user_db,
                                                dbs=dbs, db_type=db_type, langchain_mode='UserData',
                                                use_openai_embedding=use_openai_embedding,
                                                hf_embedding_model=hf_embedding_model,
                                                enable_captions=enable_captions,
                                                captions_model=captions_model,
                                                enable_ocr=enable_ocr,
                                                caption_loader=caption_loader,
                                                verbose=kwargs['verbose'],
                                                user_path=kwargs['user_path'],
                                                )
        add_file_outputs = [fileup_output, langchain_mode, add_to_shared_db_btn, add_to_my_db_btn]
        add_file_kwargs = dict(fn=update_user_db_func,
                               inputs=[fileup_output, my_db_state, add_to_shared_db_btn,
                                       add_to_my_db_btn,
                                       chunk, chunk_size],
                               outputs=add_file_outputs + [sources_text],
                               queue=queue,
                               api_name='add_to_shared' if allow_api and allow_upload_to_user_data else None)

        if allow_upload_to_user_data and not allow_upload_to_my_data:
            func1 = fileup_output.change
        else:
            func1 = add_to_shared_db_btn.click
        # then no need for add buttons, only single changeable db
        eventdb1a = func1(make_non_interactive, inputs=add_file_outputs, outputs=add_file_outputs,
                          show_progress='minimal')
        eventdb1 = eventdb1a.then(**add_file_kwargs, show_progress='minimal')
        eventdb1.then(make_interactive, inputs=add_file_outputs, outputs=add_file_outputs, show_progress='minimal')

        # note for update_user_db_func output is ignored for db

        def clear_textbox():
            return gr.Textbox.update(value='')

        update_user_db_url_func = functools.partial(update_user_db_func, is_url=True)

        add_url_outputs = [url_text, langchain_mode, url_user_btn, url_my_btn]
        add_url_kwargs = dict(fn=update_user_db_url_func,
                              inputs=[url_text, my_db_state, url_user_btn, url_my_btn,
                                      chunk, chunk_size],
                              outputs=add_url_outputs + [sources_text],
                              queue=queue,
                              api_name='add_url_to_shared' if allow_api and allow_upload_to_user_data else None)

        if allow_upload_to_user_data and not allow_upload_to_my_data:
            func2 = url_text.submit
        else:
            func2 = url_user_btn.click
        eventdb2a = func2(fn=dummy_fun, inputs=url_text, outputs=url_text, queue=queue,
                          show_progress='minimal')
        # work around https://github.com/gradio-app/gradio/issues/4733
        eventdb2b = eventdb2a.then(make_non_interactive, inputs=add_url_outputs, outputs=add_url_outputs,
                                   show_progress='minimal')
        eventdb2 = eventdb2b.then(**add_url_kwargs, show_progress='minimal')
        eventdb2.then(make_interactive, inputs=add_url_outputs, outputs=add_url_outputs, show_progress='minimal')

        update_user_db_txt_func = functools.partial(update_user_db_func, is_txt=True)
        add_text_outputs = [user_text_text, langchain_mode, user_text_user_btn, user_text_my_btn]
        add_text_kwargs = dict(fn=update_user_db_txt_func,
                               inputs=[user_text_text, my_db_state, user_text_user_btn, user_text_my_btn,
                                       chunk, chunk_size],
                               outputs=add_text_outputs + [sources_text],
                               queue=queue,
                               api_name='add_text_to_shared' if allow_api and allow_upload_to_user_data else None
                               )
        if allow_upload_to_user_data and not allow_upload_to_my_data:
            func3 = user_text_text.submit
        else:
            func3 = user_text_user_btn.click

        eventdb3a = func3(fn=dummy_fun, inputs=user_text_text, outputs=user_text_text, queue=queue,
                          show_progress='minimal')
        eventdb3b = eventdb3a.then(make_non_interactive, inputs=add_text_outputs, outputs=add_text_outputs,
                                   show_progress='minimal')
        eventdb3 = eventdb3b.then(**add_text_kwargs, show_progress='minimal')
        eventdb3.then(make_interactive, inputs=add_text_outputs, outputs=add_text_outputs,
                      show_progress='minimal')

        update_my_db_func = functools.partial(update_user_db, dbs=dbs, db_type=db_type, langchain_mode='MyData',
                                              use_openai_embedding=use_openai_embedding,
                                              hf_embedding_model=hf_embedding_model,
                                              enable_captions=enable_captions,
                                              captions_model=captions_model,
                                              enable_ocr=enable_ocr,
                                              caption_loader=caption_loader,
                                              verbose=kwargs['verbose'],
                                              user_path=kwargs['user_path'],
                                              )

        add_my_file_outputs = [fileup_output, langchain_mode, my_db_state, add_to_shared_db_btn, add_to_my_db_btn]
        add_my_file_kwargs = dict(fn=update_my_db_func,
                                  inputs=[fileup_output, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
                                          chunk, chunk_size],
                                  outputs=add_my_file_outputs + [sources_text],
                                  queue=queue,
                                  api_name='add_to_my' if allow_api and allow_upload_to_my_data else None)

        if not allow_upload_to_user_data and allow_upload_to_my_data:
            func4 = fileup_output.change
        else:
            func4 = add_to_my_db_btn.click

        eventdb4a = func4(make_non_interactive, inputs=add_my_file_outputs,
                          outputs=add_my_file_outputs,
                          show_progress='minimal')
        eventdb4 = eventdb4a.then(**add_my_file_kwargs, show_progress='minimal')
        eventdb4.then(make_interactive, inputs=add_my_file_outputs, outputs=add_my_file_outputs,
                      show_progress='minimal')

        update_my_db_url_func = functools.partial(update_my_db_func, is_url=True)
        add_my_url_outputs = [url_text, langchain_mode, my_db_state, url_user_btn, url_my_btn]
        add_my_url_kwargs = dict(fn=update_my_db_url_func,
                                 inputs=[url_text, my_db_state, url_user_btn, url_my_btn,
                                         chunk, chunk_size],
                                 outputs=add_my_url_outputs + [sources_text],
                                 queue=queue,
                                 api_name='add_url_to_my' if allow_api and allow_upload_to_my_data else None)
        if not allow_upload_to_user_data and allow_upload_to_my_data:
            func5 = url_text.submit
        else:
            func5 = url_my_btn.click
        eventdb5a = func5(fn=dummy_fun, inputs=url_text, outputs=url_text, queue=queue,
                          show_progress='minimal')
        eventdb5b = eventdb5a.then(make_non_interactive, inputs=add_my_url_outputs, outputs=add_my_url_outputs,
                                   show_progress='minimal')
        eventdb5 = eventdb5b.then(**add_my_url_kwargs, show_progress='minimal')
        eventdb5.then(make_interactive, inputs=add_my_url_outputs, outputs=add_my_url_outputs,
                      show_progress='minimal')

        update_my_db_txt_func = functools.partial(update_my_db_func, is_txt=True)

        add_my_text_outputs = [user_text_text, langchain_mode, my_db_state, user_text_user_btn,
                               user_text_my_btn]
        add_my_text_kwargs = dict(fn=update_my_db_txt_func,
                                  inputs=[user_text_text, my_db_state, user_text_user_btn, user_text_my_btn,
                                          chunk, chunk_size],
                                  outputs=add_my_text_outputs + [sources_text],
                                  queue=queue,
                                  api_name='add_txt_to_my' if allow_api and allow_upload_to_my_data else None)
        if not allow_upload_to_user_data and allow_upload_to_my_data:
            func6 = user_text_text.submit
        else:
            func6 = user_text_my_btn.click

        eventdb6a = func6(fn=dummy_fun, inputs=user_text_text, outputs=user_text_text, queue=queue,
                          show_progress='minimal')
        eventdb6b = eventdb6a.then(make_non_interactive, inputs=add_my_text_outputs, outputs=add_my_text_outputs,
                                   show_progress='minimal')
        eventdb6 = eventdb6b.then(**add_my_text_kwargs, show_progress='minimal')
        eventdb6.then(make_interactive, inputs=add_my_text_outputs, outputs=add_my_text_outputs,
                      show_progress='minimal')

        get_sources1 = functools.partial(get_sources, dbs=dbs, docs_state0=docs_state0)

        # if change collection source, must clear doc selections from it to avoid inconsistency
        def clear_doc_choice():
            return gr.Dropdown.update(choices=docs_state0, value=[docs_state0[0]])

        langchain_mode.change(clear_doc_choice, inputs=None, outputs=document_choice)

        def update_dropdown(x):
            return gr.Dropdown.update(choices=x, value=[docs_state0[0]])

        eventdb7 = get_sources_btn.click(get_sources1, inputs=[my_db_state, langchain_mode],
                                         outputs=[file_source, docs_state],
                                         queue=queue,
                                         api_name='get_sources' if allow_api else None) \
            .then(fn=update_dropdown, inputs=docs_state, outputs=document_choice)
        # show button, else only show when add.  Could add to above get_sources for download/dropdown, but bit much maybe
        show_sources1 = functools.partial(get_source_files_given_langchain_mode, dbs=dbs)
        eventdb8 = show_sources_btn.click(fn=show_sources1, inputs=[my_db_state, langchain_mode], outputs=sources_text,
                                          api_name='show_sources' if allow_api else None)

        # Get inputs to evaluate() and make_db()
        # don't deepcopy, can contain model itself
        all_kwargs = kwargs.copy()
        all_kwargs.update(locals())

        refresh_sources1 = functools.partial(update_and_get_source_files_given_langchain_mode,
                                             **get_kwargs(update_and_get_source_files_given_langchain_mode,
                                                          exclude_names=['db1', 'langchain_mode'],
                                                          **all_kwargs))
        eventdb9 = refresh_sources_btn.click(fn=refresh_sources1, inputs=[my_db_state, langchain_mode],
                                             outputs=sources_text,
                                             api_name='refresh_sources' if allow_api else None)

        def check_admin_pass(x):
            return gr.update(visible=x == admin_pass)

        def close_admin(x):
            return gr.update(visible=not (x == admin_pass))

        admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row, queue=False) \
            .then(close_admin, inputs=admin_pass_textbox, outputs=admin_row, queue=False)

        inputs_list, inputs_dict = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=1)
        inputs_list2, inputs_dict2 = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=2)
        from functools import partial
        kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list}
        # ensure present
        for k in inputs_kwargs_list:
            assert k in kwargs_evaluate, "Missing %s" % k

        def evaluate_gradio(*args1, **kwargs1):
            for res_dict in evaluate(*args1, **kwargs1):
                if kwargs['langchain_mode'] == 'Disabled':
                    yield fix_text_for_gradio(res_dict['response'])
                else:
                    yield '<br>' + fix_text_for_gradio(res_dict['response'])

        fun = partial(evaluate_gradio,
                      **kwargs_evaluate)
        fun2 = partial(evaluate_gradio,
                       **kwargs_evaluate)
        fun_with_dict_str = partial(evaluate_from_str,
                                    default_kwargs=default_kwargs,
                                    **kwargs_evaluate
                                    )

        dark_mode_btn = gr.Button("Dark Mode", variant="primary", size="sm")
        # FIXME: Could add exceptions for non-chat but still streaming
        exception_text = gr.Textbox(value="", visible=kwargs['chat'], label='Chat Exceptions', interactive=False)
        dark_mode_btn.click(
            None,
            None,
            None,
            _js=get_dark_js(),
            api_name="dark" if allow_api else None,
            queue=False,
        )

        # Control chat and non-chat blocks, which can be independently used by chat checkbox swap
        def col_nochat_fun(x):
            return gr.Column.update(visible=not x)

        def col_chat_fun(x):
            return gr.Column.update(visible=bool(x))

        def context_fun(x):
            return gr.Textbox.update(visible=not x)

        chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \
            .then(col_chat_fun, chat, col_chat) \
            .then(context_fun, chat, context) \
            .then(col_chat_fun, chat, exception_text)

        # examples after submit or any other buttons for chat or no chat
        if kwargs['examples'] is not None and kwargs['show_examples']:
            gr.Examples(examples=kwargs['examples'], inputs=inputs_list)

        # Score
        def score_last_response(*args, nochat=False, num_model_lock=0):
            try:
                if num_model_lock > 0:
                    # then lock way
                    args_list = list(args).copy()
                    outputs = args_list[-num_model_lock:]
                    score_texts1 = []
                    for output in outputs:
                        # same input, put into form good for _score_last_response()
                        args_list[-1] = output
                        score_texts1.append(
                            _score_last_response(*tuple(args_list), nochat=nochat,
                                                 num_model_lock=num_model_lock, prefix=''))
                    if len(score_texts1) > 1:
                        return "Response Scores: %s" % ' '.join(score_texts1)
                    else:
                        return "Response Scores: %s" % score_texts1[0]
                else:
                    return _score_last_response(*args, nochat=nochat, num_model_lock=num_model_lock)
            finally:
                clear_torch_cache()

        def _score_last_response(*args, nochat=False, num_model_lock=0, prefix='Response Score: '):
            """ Similar to user() """
            args_list = list(args)
            smodel = score_model_state0['model']
            stokenizer = score_model_state0['tokenizer']
            sdevice = score_model_state0['device']

            if memory_restriction_level > 0:
                max_length_tokenize = 768 - 256 if memory_restriction_level <= 2 else 512 - 256
            elif hasattr(stokenizer, 'model_max_length'):
                max_length_tokenize = stokenizer.model_max_length
            else:
                # limit to 1024, not worth OOMing on reward score
                max_length_tokenize = 2048 - 1024
            cutoff_len = max_length_tokenize * 4  # restrict deberta related to max for LLM

            if not nochat:
                history = args_list[-1]
                if history is None:
                    history = []
                if smodel is not None and \
                        stokenizer is not None and \
                        sdevice is not None and \
                        history is not None and len(history) > 0 and \
                        history[-1] is not None and \
                        len(history[-1]) >= 2:
                    os.environ['TOKENIZERS_PARALLELISM'] = 'false'

                    question = history[-1][0]

                    answer = history[-1][1]
                else:
                    return '%sNA' % prefix
            else:
                answer = args_list[-1]
                instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat')
                question = args_list[instruction_nochat_arg_id]

            if question is None:
                return '%sBad Question' % prefix
            if answer is None:
                return '%sBad Answer' % prefix
            try:
                score = score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len)
            finally:
                clear_torch_cache()
            if isinstance(score, str):
                return '%sNA' % prefix
            return '{}{:.1%}'.format(prefix, score)

        def noop_score_last_response(*args, **kwargs):
            return "Response Score: Disabled"

        if kwargs['score_model']:
            score_fun = score_last_response
        else:
            score_fun = noop_score_last_response

        score_args = dict(fn=score_fun,
                          inputs=inputs_list + [text_output],
                          outputs=[score_text],
                          )
        score_args2 = dict(fn=partial(score_fun),
                           inputs=inputs_list2 + [text_output2],
                           outputs=[score_text2],
                           )
        score_fun_func = functools.partial(score_fun, num_model_lock=len(text_outputs))
        all_score_args = dict(fn=score_fun_func,
                              inputs=inputs_list + text_outputs,
                              outputs=score_text,
                              )

        score_args_nochat = dict(fn=partial(score_fun, nochat=True),
                                 inputs=inputs_list + [text_output_nochat],
                                 outputs=[score_text_nochat],
                                 )

        def update_history(*args, undo=False, retry=False, sanitize_user_prompt=False):
            """
            User that fills history for bot
            :param args:
            :param undo:
            :param sanitize_user_prompt:
            :param model2:
            :return:
            """
            args_list = list(args)
            user_message = args_list[eval_func_param_names.index('instruction')]  # chat only
            input1 = args_list[eval_func_param_names.index('iinput')]  # chat only
            prompt_type1 = args_list[eval_func_param_names.index('prompt_type')]
            if not prompt_type1:
                # shouldn't have to specify if CLI launched model
                prompt_type1 = kwargs['prompt_type']
                # apply back
                args_list[eval_func_param_names.index('prompt_type')] = prompt_type1
            if input1 and not user_message.endswith(':'):
                user_message1 = user_message + ":" + input1
            elif input1:
                user_message1 = user_message + input1
            else:
                user_message1 = user_message
            if sanitize_user_prompt:
                from better_profanity import profanity
                user_message1 = profanity.censor(user_message1)

            history = args_list[-1]
            if history is None:
                # bad history
                history = []
            history = history.copy()

            if undo:
                if len(history) > 0:
                    history.pop()
                return history
            if retry:
                if history:
                    history[-1][1] = None
                return history
            if user_message1 in ['', None, '\n']:
                # reject non-retry submit/enter
                return history
            user_message1 = fix_text_for_gradio(user_message1)
            return history + [[user_message1, None]]

        def user(*args, undo=False, retry=False, sanitize_user_prompt=False):
            return update_history(*args, undo=undo, retry=retry, sanitize_user_prompt=sanitize_user_prompt)

        def all_user(*args, undo=False, retry=False, sanitize_user_prompt=False, num_model_lock=0):
            args_list = list(args)
            history_list = args_list[-num_model_lock:]
            assert len(history_list) > 0, "Bad history list: %s" % history_list
            for hi, history in enumerate(history_list):
                if num_model_lock > 0:
                    hargs = args_list[:-num_model_lock].copy()
                else:
                    hargs = args_list.copy()
                hargs += [history]
                history_list[hi] = update_history(*hargs, undo=undo, retry=retry,
                                                  sanitize_user_prompt=sanitize_user_prompt)
            if len(history_list) > 1:
                return tuple(history_list)
            else:
                return history_list[0]

        def get_model_max_length(model_state1):
            if model_state1 and not isinstance(model_state1["tokenizer"], str):
                tokenizer = model_state1["tokenizer"]
            elif model_state0 and not isinstance(model_state0["tokenizer"], str):
                tokenizer = model_state0["tokenizer"]
            else:
                tokenizer = None
            if tokenizer is not None:
                return tokenizer.model_max_length
            else:
                return 2000

        def prep_bot(*args, retry=False, which_model=0):
            """

            :param args:
            :param retry:
            :param which_model: identifies which model if doing model_lock
                 API only called for which_model=0, default for inputs_list, but rest should ignore inputs_list
            :return: last element is True if should run bot, False if should just yield history
            """
            # don't deepcopy, can contain model itself
            args_list = list(args).copy()
            model_state1 = args_list[-3]
            my_db_state1 = args_list[-2]
            history = args_list[-1]
            langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
            prompt_type1 = args_list[eval_func_param_names.index('prompt_type')]
            prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')]

            if model_state1['model'] is None or model_state1['model'] == no_model_str:
                return history, None, None, None

            args_list = args_list[:-3]  # only keep rest needed for evaluate()
            if not history:
                print("No history", flush=True)
                history = []
                return history, None, None, None
            instruction1 = history[-1][0]
            if retry and history:
                # if retry, pop history and move onto bot stuff
                instruction1 = history[-1][0]
                history[-1][1] = None
            elif not instruction1:
                # if not retrying, then reject empty query
                return history, None, None, None
            elif len(history) > 0 and history[-1][1] not in [None, '']:
                # reject submit button if already filled and not retrying
                # None when not filling with '' to keep client happy
                return history, None, None, None

            # shouldn't have to specify in API prompt_type if CLI launched model, so prefer global CLI one if have it
            if not prompt_type1 or which_model != 0:
                prompt_type1 = kwargs.get('prompt_type', prompt_type1)
                # prefer model specific prompt type instead of global one
                prompt_type1 = model_state1.get('prompt_type', prompt_type1)
                # apply back to args_list for evaluate()
                args_list[eval_func_param_names.index('prompt_type')] = prompt_type1

            if not prompt_dict1 or which_model != 0:
                prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1)
                prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1)
                args_list[eval_func_param_names.index('prompt_dict')] = prompt_dict1

            chat1 = args_list[eval_func_param_names.index('chat')]
            model_max_length1 = get_model_max_length(model_state1)
            context1 = history_to_context(history, langchain_mode1, prompt_type1, prompt_dict1, chat1,
                                          model_max_length1, memory_restriction_level,
                                          kwargs['keep_sources_in_context'])
            args_list[0] = instruction1  # override original instruction with history from user
            args_list[2] = context1

            fun1 = partial(evaluate,
                           model_state1,
                           my_db_state1,
                           *tuple(args_list),
                           **kwargs_evaluate)

            return history, fun1, langchain_mode1, my_db_state1

        def get_response(fun1, history):
            """
            bot that consumes history for user input
            instruction (from input_list) itself is not consumed by bot
            :return:
            """
            if not fun1:
                yield history, ''
                return
            try:
                for output_fun in fun1():
                    output = output_fun['response']
                    extra = output_fun['sources']  # FIXME: can show sources in separate text box etc.
                    # ensure good visually, else markdown ignores multiple \n
                    bot_message = fix_text_for_gradio(output)
                    history[-1][1] = bot_message
                    yield history, ''
            except StopIteration:
                yield history, ''
            except RuntimeError as e:
                if "generator raised StopIteration" in str(e):
                    # assume last entry was bad, undo
                    history.pop()
                    yield history, ''
                else:
                    if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
                        history[-1][1] = ''
                    yield history, str(e)
                    raise
            except Exception as e:
                # put error into user input
                ex = "Exception: %s" % str(e)
                if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
                    history[-1][1] = ''
                yield history, ex
                raise
            finally:
                clear_torch_cache()
            return

        def clear_embeddings(langchain_mode1, my_db):
            # clear any use of embedding that sits on GPU, else keeps accumulating GPU usage even if clear torch cache
            if db_type == 'chroma' and langchain_mode1 not in ['ChatLLM', 'LLM', 'Disabled', None, '']:
                from gpt_langchain import clear_embedding
                db = dbs.get('langchain_mode1')
                if db is not None and not isinstance(db, str):
                    clear_embedding(db)
                if langchain_mode1 == LangChainMode.MY_DATA.value and my_db is not None:
                    clear_embedding(my_db[0])

        def bot(*args, retry=False):
            history, fun1, langchain_mode1, my_db_state1 = prep_bot(*args, retry=retry)
            try:
                for res in get_response(fun1, history):
                    yield res
            finally:
                clear_embeddings(langchain_mode1, my_db_state1)

        def all_bot(*args, retry=False, model_states1=None):
            args_list = list(args).copy()
            chatbots = args_list[-len(model_states1):]
            args_list0 = args_list[:-len(model_states1)]  # same for all models
            exceptions = []
            stream_output1 = args_list[eval_func_param_names.index('stream_output')]
            max_time1 = args_list[eval_func_param_names.index('max_time')]
            langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
            my_db_state1 = None  # will be filled below by some bot
            try:
                gen_list = []
                for chatboti, (chatbot1, model_state1) in enumerate(zip(chatbots, model_states1)):
                    args_list1 = args_list0.copy()
                    args_list1.insert(-1, model_state1)  # insert at -1 so is at -2
                    # if at start, have None in response still, replace with '' so client etc. acts like normal
                    # assumes other parts of code treat '' and None as if no response yet from bot
                    # can't do this later in bot code as racy with threaded generators
                    if len(chatbot1) > 0 and len(chatbot1[-1]) == 2 and chatbot1[-1][1] is None:
                        chatbot1[-1][1] = ''
                    args_list1.append(chatbot1)
                    # so consistent with prep_bot()
                    # with model_state1 at -3, my_db_state1 at -2, and history(chatbot) at -1
                    # langchain_mode1 and my_db_state1 should be same for every bot
                    history, fun1, langchain_mode1, my_db_state1 = prep_bot(*tuple(args_list1), retry=retry,
                                                                            which_model=chatboti)
                    gen1 = get_response(fun1, history)
                    if stream_output1:
                        gen1 = TimeoutIterator(gen1, timeout=0.01, sentinel=None, raise_on_exception=False)
                    # else timeout will truncate output for non-streaming case
                    gen_list.append(gen1)

                bots_old = chatbots.copy()
                exceptions_old = [''] * len(bots_old)
                tgen0 = time.time()
                for res1 in itertools.zip_longest(*gen_list):
                    if time.time() - tgen0 > max_time1:
                        break

                    bots = [x[0] if x is not None and not isinstance(x, BaseException) else y for x, y in
                            zip(res1, bots_old)]
                    bots_old = bots.copy()

                    def larger_str(x, y):
                        return x if len(x) > len(y) else y

                    exceptions = [x[1] if x is not None and not isinstance(x, BaseException) else larger_str(str(x), y)
                                  for x, y in zip(res1, exceptions_old)]
                    exceptions_old = exceptions.copy()

                    def choose_exc(x):
                        # don't expose ports etc. to exceptions window
                        if is_public:
                            return "Endpoint unavailable or failed"
                        else:
                            return x

                    exceptions_str = '\n'.join(
                        ['Model %s: %s' % (iix, choose_exc(x)) for iix, x in enumerate(exceptions) if
                         x not in [None, '', 'None']])
                    if len(bots) > 1:
                        yield tuple(bots + [exceptions_str])
                    else:
                        yield bots[0], exceptions_str
                if exceptions:
                    exceptions = [x for x in exceptions if x not in ['', None, 'None']]
                    if exceptions:
                        print("Generate exceptions: %s" % exceptions, flush=True)
            finally:
                clear_torch_cache()
                clear_embeddings(langchain_mode1, my_db_state1)

        # NORMAL MODEL
        user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
                         inputs=inputs_list + [text_output],
                         outputs=text_output,
                         )
        bot_args = dict(fn=bot,
                        inputs=inputs_list + [model_state, my_db_state] + [text_output],
                        outputs=[text_output, exception_text],
                        )
        retry_bot_args = dict(fn=functools.partial(bot, retry=True),
                              inputs=inputs_list + [model_state, my_db_state] + [text_output],
                              outputs=[text_output, exception_text],
                              )
        retry_user_args = dict(fn=functools.partial(user, retry=True),
                               inputs=inputs_list + [text_output],
                               outputs=text_output,
                               )
        undo_user_args = dict(fn=functools.partial(user, undo=True),
                              inputs=inputs_list + [text_output],
                              outputs=text_output,
                              )

        # MODEL2
        user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
                          inputs=inputs_list2 + [text_output2],
                          outputs=text_output2,
                          )
        bot_args2 = dict(fn=bot,
                         inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2],
                         outputs=[text_output2, exception_text],
                         )
        retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
                               inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2],
                               outputs=[text_output2, exception_text],
                               )
        retry_user_args2 = dict(fn=functools.partial(user, retry=True),
                                inputs=inputs_list2 + [text_output2],
                                outputs=text_output2,
                                )
        undo_user_args2 = dict(fn=functools.partial(user, undo=True),
                               inputs=inputs_list2 + [text_output2],
                               outputs=text_output2,
                               )

        # MODEL N
        all_user_args = dict(fn=functools.partial(all_user,
                                                  sanitize_user_prompt=kwargs['sanitize_user_prompt'],
                                                  num_model_lock=len(text_outputs),
                                                  ),
                             inputs=inputs_list + text_outputs,
                             outputs=text_outputs,
                             )
        all_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states),
                            inputs=inputs_list + [my_db_state] + text_outputs,
                            outputs=text_outputs + [exception_text],
                            )
        all_retry_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states, retry=True),
                                  inputs=inputs_list + [my_db_state] + text_outputs,
                                  outputs=text_outputs + [exception_text],
                                  )
        all_retry_user_args = dict(fn=functools.partial(all_user, retry=True,
                                                        sanitize_user_prompt=kwargs['sanitize_user_prompt'],
                                                        num_model_lock=len(text_outputs),
                                                        ),
                                   inputs=inputs_list + text_outputs,
                                   outputs=text_outputs,
                                   )
        all_undo_user_args = dict(fn=functools.partial(all_user, undo=True,
                                                       sanitize_user_prompt=kwargs['sanitize_user_prompt'],
                                                       num_model_lock=len(text_outputs),
                                                       ),
                                  inputs=inputs_list + text_outputs,
                                  outputs=text_outputs,
                                  )

        def clear_instruct():
            return gr.Textbox.update(value='')

        def deselect_radio_chats():
            return gr.update(value=None)

        def clear_all():
            return gr.Textbox.update(value=''), gr.Textbox.update(value=''), gr.update(value=None), \
                gr.Textbox.update(value=''), gr.Textbox.update(value='')

        if kwargs['model_states']:
            submits1 = submits2 = submits3 = []
            submits4 = []

            fun_source = [instruction.submit, submit.click, retry_btn.click]
            fun_name = ['instruction', 'submit', 'retry']
            user_args = [all_user_args, all_user_args, all_retry_user_args]
            bot_args = [all_bot_args, all_bot_args, all_retry_bot_args]
            for userargs1, botarg1, funn1, funs1 in zip(user_args, bot_args, fun_name, fun_source):
                submit_event11 = funs1(fn=dummy_fun,
                                       inputs=instruction, outputs=instruction, queue=queue)
                submit_event1a = submit_event11.then(**userargs1, queue=queue,
                                                     api_name='%s' % funn1 if allow_api else None)
                # if hit enter on new instruction for submitting new query, no longer the saved chat
                submit_event1b = submit_event1a.then(clear_all, inputs=None,
                                                     outputs=[instruction, iinput, radio_chats, score_text,
                                                              score_text2],
                                                     queue=queue)
                submit_event1c = submit_event1b.then(**botarg1,
                                                     api_name='%s_bot' % funn1 if allow_api else None,
                                                     queue=queue)
                submit_event1d = submit_event1c.then(**all_score_args,
                                                     api_name='%s_bot_score' % funn1 if allow_api else None,
                                                     queue=queue)

                submits1.extend([submit_event1a, submit_event1b, submit_event1c, submit_event1d])

            # if undo, no longer the saved chat
            submit_event4 = undo.click(fn=dummy_fun,
                                       inputs=instruction, outputs=instruction, queue=queue) \
                .then(**all_undo_user_args, api_name='undo' if allow_api else None) \
                .then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text,
                                                       score_text2], queue=queue) \
                .then(**all_score_args, api_name='undo_score' if allow_api else None)
            submits4 = [submit_event4]

        else:
            # in case 2nd model, consume instruction first, so can clear quickly
            # bot doesn't consume instruction itself, just history from user, so why works
            submit_event11 = instruction.submit(fn=dummy_fun,
                                                inputs=instruction, outputs=instruction, queue=queue)
            submit_event1a = submit_event11.then(**user_args, queue=queue,
                                                 api_name='instruction' if allow_api else None)
            # if hit enter on new instruction for submitting new query, no longer the saved chat
            submit_event1a2 = submit_event1a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue)
            submit_event1b = submit_event1a2.then(**user_args2, api_name='instruction2' if allow_api else None)
            submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \
                .then(clear_instruct, None, iinput)
            submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None,
                                                 queue=queue)
            submit_event1e = submit_event1d.then(**score_args,
                                                 api_name='instruction_bot_score' if allow_api else None,
                                                 queue=queue)
            submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None,
                                                 queue=queue)
            submit_event1g = submit_event1f.then(**score_args2,
                                                 api_name='instruction_bot_score2' if allow_api else None, queue=queue)

            submits1 = [submit_event1a, submit_event1a2, submit_event1b, submit_event1c, submit_event1d,
                        submit_event1e,
                        submit_event1f, submit_event1g]

            submit_event21 = submit.click(fn=dummy_fun,
                                          inputs=instruction, outputs=instruction, queue=queue)
            submit_event2a = submit_event21.then(**user_args, api_name='submit' if allow_api else None)
            # if submit new query, no longer the saved chat
            submit_event2a2 = submit_event2a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue)
            submit_event2b = submit_event2a2.then(**user_args2, api_name='submit2' if allow_api else None)
            submit_event2c = submit_event2b.then(clear_all, inputs=None,
                                                 outputs=[instruction, iinput, radio_chats, score_text, score_text2],
                                                 queue=queue)
            submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue)
            submit_event2e = submit_event2d.then(**score_args,
                                                 api_name='submit_bot_score' if allow_api else None,
                                                 queue=queue)
            submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None,
                                                 queue=queue)
            submit_event2g = submit_event2f.then(**score_args2,
                                                 api_name='submit_bot_score2' if allow_api else None,
                                                 queue=queue)

            submits2 = [submit_event2a, submit_event2a2, submit_event2b, submit_event2c, submit_event2d,
                        submit_event2e,
                        submit_event2f, submit_event2g]

            submit_event31 = retry_btn.click(fn=dummy_fun,
                                             inputs=instruction, outputs=instruction, queue=queue)
            submit_event3a = submit_event31.then(**user_args, api_name='retry' if allow_api else None)
            # if retry, no longer the saved chat
            submit_event3a2 = submit_event3a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue)
            submit_event3b = submit_event3a2.then(**user_args2, api_name='retry2' if allow_api else None)
            submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \
                .then(clear_instruct, None, iinput)
            submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None,
                                                 queue=queue)
            submit_event3e = submit_event3d.then(**score_args,
                                                 api_name='retry_bot_score' if allow_api else None,
                                                 queue=queue)
            submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None,
                                                 queue=queue)
            submit_event3g = submit_event3f.then(**score_args2,
                                                 api_name='retry_bot_score2' if allow_api else None,
                                                 queue=queue)

            submits3 = [submit_event3a, submit_event3a2, submit_event3b, submit_event3c, submit_event3d,
                        submit_event3e,
                        submit_event3f, submit_event3g]

            # if undo, no longer the saved chat
            submit_event4 = undo.click(fn=dummy_fun,
                                       inputs=instruction, outputs=instruction, queue=queue) \
                .then(**undo_user_args, api_name='undo' if allow_api else None) \
                .then(**undo_user_args2, api_name='undo2' if allow_api else None) \
                .then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text,
                                                       score_text2], queue=queue) \
                .then(**score_args, api_name='undo_score' if allow_api else None) \
                .then(**score_args2, api_name='undo_score2' if allow_api else None)
            submits4 = [submit_event4]

        # MANAGE CHATS
        def dedup(short_chat, short_chats):
            if short_chat not in short_chats:
                return short_chat
            for i in range(1, 1000):
                short_chat_try = short_chat + "_" + str(i)
                if short_chat_try not in short_chats:
                    return short_chat_try
            # fallback and hope for best
            short_chat = short_chat + "_" + str(random.random())
            return short_chat

        def get_short_chat(x, short_chats, short_len=20, words=4):
            if x and len(x[0]) == 2 and x[0][0] is not None:
                short_chat = ' '.join(x[0][0][:short_len].split(' ')[:words]).strip()
                short_chat = dedup(short_chat, short_chats)
            else:
                short_chat = None
            return short_chat

        def is_chat_same(x, y):
            # <p> etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation
            is_same = True
            # length of conversation has to be same
            if len(x) != len(y):
                return False
            if len(x) != len(y):
                return False
            for stepx, stepy in zip(x, y):
                if len(stepx) != len(stepy):
                    # something off with a conversation
                    return False
                for stepxx, stepyy in zip(stepx, stepy):
                    if len(stepxx) != len(stepyy):
                        # something off with a conversation
                        return False
                    if len(stepxx) != 2:
                        # something off
                        return False
                    if len(stepyy) != 2:
                        # something off
                        return False
                    questionx = stepxx[0].replace('<p>', '').replace('</p>', '') if stepxx[0] is not None else None
                    answerx = stepxx[1].replace('<p>', '').replace('</p>', '') if stepxx[1] is not None else None

                    questiony = stepyy[0].replace('<p>', '').replace('</p>', '') if stepyy[0] is not None else None
                    answery = stepyy[1].replace('<p>', '').replace('</p>', '') if stepyy[1] is not None else None

                    if questionx != questiony or answerx != answery:
                        return False
            return is_same

        def save_chat(*args):
            args_list = list(args)
            chat_list = args_list[:-1]  # list of chatbot histories
            # remove None histories
            chat_list_not_none = [x for x in chat_list if x and len(x) > 0 and len(x[0]) == 2 and x[0][1] is not None]
            chat_state1 = args_list[
                -1]  # dict with keys of short chat names, values of list of list of chatbot histories
            short_chats = list(chat_state1.keys())
            if len(chat_list_not_none) > 0:
                # make short_chat key from only first history, based upon question that is same anyways
                chat_first = chat_list_not_none[0]
                short_chat = get_short_chat(chat_first, short_chats)
                if short_chat:
                    old_chat_lists = list(chat_state1.values())
                    already_exists = any([is_chat_same(chat_list, x) for x in old_chat_lists])
                    if not already_exists:
                        chat_state1[short_chat] = chat_list.copy()
                # clear chat_list so saved and then new conversation starts
                chat_list = [[]] * len(chat_list)
            ret_list = chat_list + [chat_state1]
            return tuple(ret_list)

        def update_radio_chats(chat_state1):
            return gr.update(choices=list(chat_state1.keys()), value=None)

        def switch_chat(chat_key, chat_state1, num_model_lock=0):
            chosen_chat = chat_state1[chat_key]
            # deal with possible different size of chat list vs. current list
            ret_chat = [None] * (2 + num_model_lock)
            for chati in range(0, 2 + num_model_lock):
                ret_chat[chati % len(ret_chat)] = chosen_chat[chati % len(chosen_chat)]
            return tuple(ret_chat)

        def clear_texts(*args):
            return tuple([gr.Textbox.update(value='')] * len(args))

        def clear_scores():
            return gr.Textbox.update(value=res_value), \
                gr.Textbox.update(value='Response Score: NA'), \
                gr.Textbox.update(value='Response Score: NA')

        switch_chat_fun = functools.partial(switch_chat, num_model_lock=len(text_outputs))
        radio_chats.input(switch_chat_fun,
                          inputs=[radio_chats, chat_state],
                          outputs=[text_output, text_output2] + text_outputs) \
            .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat])

        def remove_chat(chat_key, chat_state1):
            chat_state1.pop(chat_key, None)
            return chat_state1

        remove_chat_btn.click(remove_chat, inputs=[radio_chats, chat_state], outputs=chat_state) \
            .then(update_radio_chats, inputs=chat_state, outputs=radio_chats)

        def get_chats1(chat_state1):
            base = 'chats'
            makedirs(base, exist_ok=True)
            filename = os.path.join(base, 'chats_%s.json' % str(uuid.uuid4()))
            with open(filename, "wt") as f:
                f.write(json.dumps(chat_state1, indent=2))
            return filename

        export_chats_btn.click(get_chats1, inputs=chat_state, outputs=chats_file, queue=False,
                               api_name='export_chats' if allow_api else None)

        def add_chats_from_file(file, chat_state1, add_btn):
            if not file:
                return chat_state1, add_btn
            if isinstance(file, str):
                files = [file]
            else:
                files = file
            if not files:
                return chat_state1, add_btn
            for file1 in files:
                try:
                    if hasattr(file1, 'name'):
                        file1 = file1.name
                    with open(file1, "rt") as f:
                        new_chats = json.loads(f.read())
                        for chat1_k, chat1_v in new_chats.items():
                            # ignore chat1_k, regenerate and de-dup to avoid loss
                            _, chat_state1 = save_chat(chat1_v, chat_state1)
                except BaseException as e:
                    t, v, tb = sys.exc_info()
                    ex = ''.join(traceback.format_exception(t, v, tb))
                    print("Add chats exception: %s" % str(ex), flush=True)
            return chat_state1, add_btn

        # note for update_user_db_func output is ignored for db
        add_to_chats_btn.click(add_chats_from_file,
                               inputs=[chatsup_output, chat_state, add_to_chats_btn],
                               outputs=[chat_state, add_to_my_db_btn], queue=False,
                               api_name='add_to_chats' if allow_api else None) \
            .then(clear_file_list, outputs=chatsup_output, queue=False) \
            .then(update_radio_chats, inputs=chat_state, outputs=radio_chats, queue=False)

        clear_chat_btn.click(fn=clear_texts,
                             inputs=[text_output, text_output2] + text_outputs,
                             outputs=[text_output, text_output2] + text_outputs,
                             queue=False, api_name='clear' if allow_api else None) \
            .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \
            .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat])

        # does both models
        clear.click(save_chat,
                    inputs=[text_output, text_output2] + text_outputs + [chat_state],
                    outputs=[text_output, text_output2] + text_outputs + [chat_state],
                    api_name='save_chat' if allow_api else None) \
            .then(update_radio_chats, inputs=chat_state, outputs=radio_chats,
                  api_name='update_chats' if allow_api else None) \
            .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat])

        # NOTE: clear of instruction/iinput for nochat has to come after score,
        # because score for nochat consumes actual textbox, while chat consumes chat history filled by user()
        no_chat_args = dict(fn=fun,
                            inputs=[model_state, my_db_state] + inputs_list,
                            outputs=text_output_nochat,
                            queue=queue,
                            )
        submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \
            .then(clear_torch_cache) \
            .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \
            .then(clear_instruct, None, instruction_nochat) \
            .then(clear_instruct, None, iinput_nochat) \
            .then(clear_torch_cache)
        # copy of above with text box submission
        submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \
            .then(clear_torch_cache) \
            .then(**score_args_nochat, queue=queue) \
            .then(clear_instruct, None, instruction_nochat) \
            .then(clear_instruct, None, iinput_nochat) \
            .then(clear_torch_cache)

        submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str,
                                                          inputs=[model_state, my_db_state, inputs_dict_str],
                                                          outputs=text_output_nochat_api,
                                                          queue=True,  # required for generator
                                                          api_name='submit_nochat_api' if allow_api else None) \
            .then(clear_torch_cache)

        def load_model(model_name, lora_weights, server_name, model_state_old, prompt_type_old, load_8bit,
                       infer_devices, gpu_id):
            # ensure no API calls reach here
            if is_public:
                raise RuntimeError("Illegal access for %s" % model_name)
            # ensure old model removed from GPU memory
            if kwargs['debug']:
                print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True)

            model0 = model_state0['model']
            if isinstance(model_state_old['model'], str) and model0 is not None:
                # best can do, move model loaded at first to CPU
                model0.cpu()

            if model_state_old['model'] is not None and not isinstance(model_state_old['model'], str):
                try:
                    model_state_old['model'].cpu()
                except Exception as e:
                    # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data!
                    print("Unable to put model on CPU: %s" % str(e), flush=True)
                del model_state_old['model']
                model_state_old['model'] = None

            if model_state_old['tokenizer'] is not None and not isinstance(model_state_old['tokenizer'], str):
                del model_state_old['tokenizer']
                model_state_old['tokenizer'] = None

            clear_torch_cache()
            if kwargs['debug']:
                print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True)

            if model_name is None or model_name == no_model_str:
                # no-op if no model, just free memory
                # no detranscribe needed for model, never go into evaluate
                lora_weights = no_lora_str
                server_name = no_server_str
                return [None, None, None, model_name, server_name], \
                    model_name, lora_weights, server_name, prompt_type_old, \
                    gr.Slider.update(maximum=256), \
                    gr.Slider.update(maximum=256)

            # don't deepcopy, can contain model itself
            all_kwargs1 = all_kwargs.copy()
            all_kwargs1['base_model'] = model_name.strip()
            all_kwargs1['load_8bit'] = load_8bit
            all_kwargs1['infer_devices'] = infer_devices
            all_kwargs1['gpu_id'] = int(gpu_id)  # detranscribe
            model_lower = model_name.strip().lower()
            if model_lower in inv_prompt_type_to_model_lower:
                prompt_type1 = inv_prompt_type_to_model_lower[model_lower]
            else:
                prompt_type1 = prompt_type_old

            # detranscribe
            if lora_weights == no_lora_str:
                lora_weights = ''
            all_kwargs1['lora_weights'] = lora_weights.strip()
            if server_name == no_server_str:
                server_name = ''
            all_kwargs1['inference_server'] = server_name.strip()

            model1, tokenizer1, device1 = get_model(reward_type=False,
                                                    **get_kwargs(get_model, exclude_names=['reward_type'],
                                                                 **all_kwargs1))
            clear_torch_cache()

            tokenizer_base_model = model_name
            prompt_dict1, error0 = get_prompt(prompt_type1, '',
                                              chat=False, context='', reduced=False, making_context=False,
                                              return_dict=True)
            model_state_new = dict(model=model1, tokenizer=tokenizer1, device=device1,
                                   base_model=model_name, tokenizer_base_model=tokenizer_base_model,
                                   lora_weights=lora_weights, inference_server=server_name,
                                   prompt_type=prompt_type1, prompt_dict=prompt_dict1,
                                   )

            max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs)

            if kwargs['debug']:
                print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True)
            return model_state_new, model_name, lora_weights, server_name, prompt_type1, \
                gr.Slider.update(maximum=max_max_new_tokens1), \
                gr.Slider.update(maximum=max_max_new_tokens1)

        def get_prompt_str(prompt_type1, prompt_dict1, which=0):
            if prompt_type1 in ['', None]:
                print("Got prompt_type %s: %s" % (which, prompt_type1), flush=True)
                return str({})
            prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='',
                                                         reduced=False, making_context=False, return_dict=True)
            if prompt_dict_error:
                return str(prompt_dict_error)
            else:
                # return so user can manipulate if want and use as custom
                return str(prompt_dict1)

        get_prompt_str_func1 = functools.partial(get_prompt_str, which=1)
        get_prompt_str_func2 = functools.partial(get_prompt_str, which=2)
        prompt_type.change(fn=get_prompt_str_func1, inputs=[prompt_type, prompt_dict], outputs=prompt_dict)
        prompt_type2.change(fn=get_prompt_str_func2, inputs=[prompt_type2, prompt_dict2], outputs=prompt_dict2)

        def dropdown_prompt_type_list(x):
            return gr.Dropdown.update(value=x)

        def chatbot_list(x, model_used_in):
            return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]')

        load_model_args = dict(fn=load_model,
                               inputs=[model_choice, lora_choice, server_choice, model_state, prompt_type,
                                       model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu],
                               outputs=[model_state, model_used, lora_used, server_used,
                                        # if prompt_type changes, prompt_dict will change via change rule
                                        prompt_type, max_new_tokens, min_new_tokens,
                                        ])
        prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type)
        chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output)
        nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat)
        if not is_public:
            load_model_event = load_model_button.click(**load_model_args, api_name='load_model' if allow_api else None) \
                .then(**prompt_update_args) \
                .then(**chatbot_update_args) \
                .then(**nochat_update_args) \
                .then(clear_torch_cache)

        load_model_args2 = dict(fn=load_model,
                                inputs=[model_choice2, lora_choice2, server_choice2, model_state2, prompt_type2,
                                        model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2],
                                outputs=[model_state2, model_used2, lora_used2, server_used2,
                                         # if prompt_type2 changes, prompt_dict2 will change via change rule
                                         prompt_type2, max_new_tokens2, min_new_tokens2
                                         ])
        prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2)
        chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2)
        if not is_public:
            load_model_event2 = load_model_button2.click(**load_model_args2,
                                                         api_name='load_model2' if allow_api else None) \
                .then(**prompt_update_args2) \
                .then(**chatbot_update_args2) \
                .then(clear_torch_cache)

        def dropdown_model_lora_server_list(model_list0, model_x,
                                            lora_list0, lora_x,
                                            server_list0, server_x,
                                            model_used1, lora_used1, server_used1,
                                            model_used2, lora_used2, server_used2,
                                            ):
            model_new_state = [model_list0[0] + [model_x]]
            model_new_options = [*model_new_state[0]]
            x1 = model_x if model_used1 == no_model_str else model_used1
            x2 = model_x if model_used2 == no_model_str else model_used2
            ret1 = [gr.Dropdown.update(value=x1, choices=model_new_options),
                    gr.Dropdown.update(value=x2, choices=model_new_options),
                    '', model_new_state]

            lora_new_state = [lora_list0[0] + [lora_x]]
            lora_new_options = [*lora_new_state[0]]
            # don't switch drop-down to added lora if already have model loaded
            x1 = lora_x if model_used1 == no_model_str else lora_used1
            x2 = lora_x if model_used2 == no_model_str else lora_used2
            ret2 = [gr.Dropdown.update(value=x1, choices=lora_new_options),
                    gr.Dropdown.update(value=x2, choices=lora_new_options),
                    '', lora_new_state]

            server_new_state = [server_list0[0] + [server_x]]
            server_new_options = [*server_new_state[0]]
            # don't switch drop-down to added server if already have model loaded
            x1 = server_x if model_used1 == no_model_str else server_used1
            x2 = server_x if model_used2 == no_model_str else server_used2
            ret3 = [gr.Dropdown.update(value=x1, choices=server_new_options),
                    gr.Dropdown.update(value=x2, choices=server_new_options),
                    '', server_new_state]

            return tuple(ret1 + ret2 + ret3)

        add_model_lora_server_event = \
            add_model_lora_server_button.click(fn=dropdown_model_lora_server_list,
                                               inputs=[model_options_state, new_model] +
                                                      [lora_options_state, new_lora] +
                                                      [server_options_state, new_server] +
                                                      [model_used, lora_used, server_used] +
                                                      [model_used2, lora_used2, server_used2],
                                               outputs=[model_choice, model_choice2, new_model, model_options_state] +
                                                       [lora_choice, lora_choice2, new_lora, lora_options_state] +
                                                       [server_choice, server_choice2, new_server,
                                                        server_options_state],
                                               queue=False)

        go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, queue=False) \
            .then(lambda: gr.update(visible=True), None, normal_block, queue=False) \
            .then(**load_model_args, queue=False).then(**prompt_update_args, queue=False)

        def compare_textbox_fun(x):
            return gr.Textbox.update(visible=x)

        def compare_column_fun(x):
            return gr.Column.update(visible=x)

        def compare_prompt_fun(x):
            return gr.Dropdown.update(visible=x)

        def slider_fun(x):
            return gr.Slider.update(visible=x)

        compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2,
                                api_name="compare_checkbox" if allow_api else None) \
            .then(compare_column_fun, compare_checkbox, col_model2) \
            .then(compare_prompt_fun, compare_checkbox, prompt_type2) \
            .then(compare_textbox_fun, compare_checkbox, score_text2) \
            .then(slider_fun, compare_checkbox, max_new_tokens2) \
            .then(slider_fun, compare_checkbox, min_new_tokens2)
        # FIXME: add score_res2 in condition, but do better

        # callback for logging flagged input/output
        callback.setup(inputs_list + [text_output, text_output2] + text_outputs, "flagged_data_points")
        flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2] + text_outputs,
                       None,
                       preprocess=False,
                       api_name='flag' if allow_api else None, queue=False)
        flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None,
                              preprocess=False,
                              api_name='flag_nochat' if allow_api else None, queue=False)

        def get_system_info():
            if is_public:
                time.sleep(10)  # delay to avoid spam since queue=False
            return gr.Textbox.update(value=system_info_print())

        system_event = system_btn.click(get_system_info, outputs=system_text,
                                        api_name='system_info' if allow_api else None, queue=False)

        def get_system_info_dict(system_input1, **kwargs1):
            if system_input1 != os.getenv("ADMIN_PASS", ""):
                return json.dumps({})
            exclude_list = ['admin_pass', 'examples']
            sys_dict = {k: v for k, v in kwargs1.items() if
                        isinstance(v, (str, int, bool, float)) and k not in exclude_list}
            try:
                sys_dict.update(system_info())
            except Exception as e:
                # protection
                print("Exception: %s" % str(e), flush=True)
            return json.dumps(sys_dict)

        get_system_info_dict_func = functools.partial(get_system_info_dict, **all_kwargs)

        system_dict_event = system_btn2.click(get_system_info_dict_func,
                                              inputs=system_input,
                                              outputs=system_text2,
                                              api_name='system_info_dict' if allow_api else None,
                                              queue=False,  # queue to avoid spam
                                              )

        def get_hash():
            return kwargs['git_hash']

        system_btn3.click(get_hash,
                          outputs=system_text3,
                          api_name='system_hash' if allow_api else None,
                          queue=False,
                          )

        # don't pass text_output, don't want to clear output, just stop it
        # cancel only stops outer generation, not inner generation or non-generation
        stop_btn.click(lambda: None, None, None,
                       cancels=submits1 + submits2 + submits3 +
                               submits4 +
                               [submit_event_nochat, submit_event_nochat2] +
                               [eventdb1, eventdb2, eventdb3,
                                eventdb4, eventdb5, eventdb6] +
                               [eventdb7, eventdb8, eventdb9]
                       ,
                       queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False)

        def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1,
                              memory_restriction_level1=0,
                              keep_sources_in_context1=False,
                              ):
            if model_state1 and not isinstance(model_state1['tokenizer'], str):
                tokenizer = model_state1['tokenizer']
            elif model_state0 and not isinstance(model_state0['tokenizer'], str):
                tokenizer = model_state0['tokenizer']
            else:
                tokenizer = None
            if tokenizer is not None:
                langchain_mode1 = 'ChatLLM'
                # fake user message to mimic bot()
                chat1 = copy.deepcopy(chat1)
                chat1 = chat1 + [['user_message1', None]]
                model_max_length1 = tokenizer.model_max_length
                context1 = history_to_context(chat1, langchain_mode1, prompt_type1, prompt_dict1, chat1,
                                              model_max_length1,
                                              memory_restriction_level1, keep_sources_in_context1)
                return str(tokenizer(context1, return_tensors="pt")['input_ids'].shape[1])
            else:
                return "N/A"

        count_chat_tokens_func = functools.partial(count_chat_tokens,
                                                   memory_restriction_level1=memory_restriction_level,
                                                   keep_sources_in_context1=kwargs['keep_sources_in_context'])
        count_chat_tokens_btn.click(fn=count_chat_tokens,
                                    inputs=[model_state, text_output, prompt_type, prompt_dict],
                                    outputs=chat_token_count, api_name='count_tokens' if allow_api else None)

        demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] and False else None)  # light best

    demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open'])
    favicon_path = "h2o-logo.svg"
    if not os.path.isfile(favicon_path):
        print("favicon_path=%s not found" % favicon_path, flush=True)
        favicon_path = None

    scheduler = BackgroundScheduler()
    scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20)
    if is_public and \
            kwargs['base_model'] not in non_hf_types:
        # FIXME: disable for gptj, langchain or gpt4all modify print itself
        # FIXME: and any multi-threaded/async print will enter model output!
        scheduler.add_job(func=ping, trigger="interval", seconds=60)
    scheduler.add_job(func=ping_gpu, trigger="interval", seconds=60 * 10)
    scheduler.start()

    # import control
    if kwargs['langchain_mode'] == 'Disabled' and \
            os.environ.get("TEST_LANGCHAIN_IMPORT") and \
            kwargs['base_model'] not in non_hf_types:
        assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have"
        assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have"

    demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
                favicon_path=favicon_path, prevent_thread_lock=True,
                auth=kwargs['auth'])
    if kwargs['verbose']:
        print("Started GUI", flush=True)
    if kwargs['block_gradio_exit']:
        demo.block_thread()


input_args_list = ['model_state', 'my_db_state']


def get_inputs_list(inputs_dict, model_lower, model_id=1):
    """
    map gradio objects in locals() to inputs for evaluate().
    :param inputs_dict:
    :param model_lower:
    :param model_id: Which model (1 or 2) of 2
    :return:
    """
    inputs_list_names = list(inspect.signature(evaluate).parameters)
    inputs_list = []
    inputs_dict_out = {}
    for k in inputs_list_names:
        if k == 'kwargs':
            continue
        if k in input_args_list + inputs_kwargs_list:
            # these are added at use time for args or partial for kwargs, not taken as input
            continue
        if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']:
            continue
        if model_id == 2:
            if k == 'prompt_type':
                k = 'prompt_type2'
            if k == 'prompt_used':
                k = 'prompt_used2'
            if k == 'max_new_tokens':
                k = 'max_new_tokens2'
            if k == 'min_new_tokens':
                k = 'min_new_tokens2'
        inputs_list.append(inputs_dict[k])
        inputs_dict_out[k] = inputs_dict[k]
    return inputs_list, inputs_dict_out


def get_sources(db1, langchain_mode, dbs=None, docs_state0=None):
    if langchain_mode in ['ChatLLM', 'LLM']:
        source_files_added = "NA"
        source_list = []
    elif langchain_mode in ['wiki_full']:
        source_files_added = "Not showing wiki_full, takes about 20 seconds and makes 4MB file." \
                             "  Ask jon.mckinney@h2o.ai for file if required."
        source_list = []
    elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None:
        from gpt_langchain import get_metadatas
        metadatas = get_metadatas(db1[0])
        source_list = sorted(set([x['source'] for x in metadatas]))
        source_files_added = '\n'.join(source_list)
    elif langchain_mode in dbs and dbs[langchain_mode] is not None:
        from gpt_langchain import get_metadatas
        db1 = dbs[langchain_mode]
        metadatas = get_metadatas(db1)
        source_list = sorted(set([x['source'] for x in metadatas]))
        source_files_added = '\n'.join(source_list)
    else:
        source_list = []
        source_files_added = "None"
    sources_dir = "sources_dir"
    makedirs(sources_dir)
    sources_file = os.path.join(sources_dir, 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4())))
    with open(sources_file, "wt") as f:
        f.write(source_files_added)
    source_list = docs_state0 + source_list
    return sources_file, source_list


def update_user_db(file, db1, x, y, *args, dbs=None, langchain_mode='UserData', **kwargs):
    try:
        return _update_user_db(file, db1, x, y, *args, dbs=dbs, langchain_mode=langchain_mode, **kwargs)
    except BaseException as e:
        print(traceback.format_exc(), flush=True)
        # gradio has issues if except, so fail semi-gracefully, else would hang forever in processing textbox
        ex_str = "Exception: %s" % str(e)
        source_files_added = """\
        <html>
          <body>
            <p>
               Sources: <br>
            </p>
               <div style="overflow-y: auto;height:400px">
               {0}
               </div>
          </body>
        </html>
        """.format(ex_str)
        if langchain_mode == 'MyData':
            return None, langchain_mode, db1, x, y, source_files_added
        else:
            return None, langchain_mode, x, y, source_files_added
    finally:
        clear_torch_cache()


def _update_user_db(file, db1, x, y, chunk, chunk_size, dbs=None, db_type=None, langchain_mode='UserData',
                    user_path=None,
                    use_openai_embedding=None,
                    hf_embedding_model=None,
                    caption_loader=None,
                    enable_captions=None,
                    captions_model=None,
                    enable_ocr=None,
                    verbose=None,
                    is_url=None, is_txt=None):
    assert use_openai_embedding is not None
    assert hf_embedding_model is not None
    assert caption_loader is not None
    assert enable_captions is not None
    assert captions_model is not None
    assert enable_ocr is not None
    assert verbose is not None

    if dbs is None:
        dbs = {}
    assert isinstance(dbs, dict), "Wrong type for dbs: %s" % str(type(dbs))
    # assert db_type in ['faiss', 'chroma'], "db_type %s not supported" % db_type
    from gpt_langchain import add_to_db, get_db, path_to_docs
    # handle case of list of temp buffer
    if isinstance(file, list) and len(file) > 0 and hasattr(file[0], 'name'):
        file = [x.name for x in file]
    # handle single file of temp buffer
    if hasattr(file, 'name'):
        file = file.name
    if not isinstance(file, (list, tuple, typing.Generator)) and isinstance(file, str):
        file = [file]

    if langchain_mode == 'UserData' and user_path is not None:
        # move temp files from gradio upload to stable location
        for fili, fil in enumerate(file):
            if isinstance(fil, str):
                if fil.startswith('/tmp/gradio/'):
                    new_fil = os.path.join(user_path, os.path.basename(fil))
                    if os.path.isfile(new_fil):
                        remove(new_fil)
                    try:
                        shutil.move(fil, new_fil)
                    except FileExistsError:
                        pass
                    file[fili] = new_fil

    if verbose:
        print("Adding %s" % file, flush=True)
    sources = path_to_docs(file if not is_url and not is_txt else None,
                           verbose=verbose,
                           chunk=chunk, chunk_size=chunk_size,
                           url=file if is_url else None,
                           text=file if is_txt else None,
                           enable_captions=enable_captions,
                           captions_model=captions_model,
                           enable_ocr=enable_ocr,
                           caption_loader=caption_loader,
                           )
    exceptions = [x for x in sources if x.metadata.get('exception')]
    sources = [x for x in sources if 'exception' not in x.metadata]

    with filelock.FileLock("db_%s.lock" % langchain_mode.replace(' ', '_')):
        if langchain_mode == 'MyData':
            if db1[0] is not None:
                # then add
                db, num_new_sources, new_sources_metadata = add_to_db(db1[0], sources, db_type=db_type,
                                                                      use_openai_embedding=use_openai_embedding,
                                                                      hf_embedding_model=hf_embedding_model)
            else:
                # in testing expect:
                # assert len(db1) == 2 and db1[1] is None, "Bad MyData db: %s" % db1
                # for production hit, when user gets clicky:
                assert len(db1) == 2, "Bad MyData db: %s" % db1
                # then create
                # assign fresh hash for this user session, so not shared
                # if added has to original state and didn't change, then would be shared db for all users
                db1[1] = str(uuid.uuid4())
                persist_directory = os.path.join(scratch_base_dir, 'db_dir_%s_%s' % (langchain_mode, db1[1]))
                db = get_db(sources, use_openai_embedding=use_openai_embedding,
                            db_type=db_type,
                            persist_directory=persist_directory,
                            langchain_mode=langchain_mode,
                            hf_embedding_model=hf_embedding_model)
            if db is None:
                db1[1] = None
            else:
                db1[0] = db
            source_files_added = get_source_files(db=db1[0], exceptions=exceptions)
            return None, langchain_mode, db1, x, y, source_files_added
        else:
            from gpt_langchain import get_persist_directory
            persist_directory = get_persist_directory(langchain_mode)
            if langchain_mode in dbs and dbs[langchain_mode] is not None:
                # then add
                db, num_new_sources, new_sources_metadata = add_to_db(dbs[langchain_mode], sources, db_type=db_type,
                                                                      use_openai_embedding=use_openai_embedding,
                                                                      hf_embedding_model=hf_embedding_model)
            else:
                # then create
                db = get_db(sources, use_openai_embedding=use_openai_embedding,
                            db_type=db_type,
                            persist_directory=persist_directory,
                            langchain_mode=langchain_mode,
                            hf_embedding_model=hf_embedding_model)
            dbs[langchain_mode] = db
            # NOTE we do not return db, because function call always same code path
            # return dbs[langchain_mode], x, y
            # db in this code path is updated in place
            source_files_added = get_source_files(db=dbs[langchain_mode], exceptions=exceptions)
            return None, langchain_mode, x, y, source_files_added


def get_db(db1, langchain_mode, dbs=None):
    with filelock.FileLock("db_%s.lock" % langchain_mode.replace(' ', '_')):
        if langchain_mode in ['wiki_full']:
            # NOTE: avoid showing full wiki.  Takes about 30 seconds over about 90k entries, but not useful for now
            db = None
        elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None:
            db = db1[0]
        elif dbs is not None and langchain_mode in dbs and dbs[langchain_mode] is not None:
            db = dbs[langchain_mode]
        else:
            db = None
    return db


def get_source_files_given_langchain_mode(db1, langchain_mode='UserData', dbs=None):
    db = get_db(db1, langchain_mode, dbs=dbs)
    if langchain_mode in ['ChatLLM', 'LLM'] or db is None:
        return "Sources: N/A"
    return get_source_files(db=db, exceptions=None)


def get_source_files(db=None, exceptions=None, metadatas=None):
    if exceptions is None:
        exceptions = []

    # only should be one source, not confused
    # assert db is not None or metadatas is not None
    # clicky user
    if db is None and metadatas is None:
        return "No Sources at all"

    if metadatas is None:
        source_label = "Sources:"
        if db is not None:
            from gpt_langchain import get_metadatas
            metadatas = get_metadatas(db)
        else:
            metadatas = []
        adding_new = False
    else:
        source_label = "New Sources:"
        adding_new = True

    # below automatically de-dups
    from gpt_langchain import get_url
    small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('head')) for x in
                  metadatas}
    # if small_dict is empty dict, that's ok
    df = pd.DataFrame(small_dict.items(), columns=['source', 'head'])
    df.index = df.index + 1
    df.index.name = 'index'
    source_files_added = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml')

    if exceptions:
        exception_metadatas = [x.metadata for x in exceptions]
        small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('exception')) for x in
                      exception_metadatas}
        # if small_dict is empty dict, that's ok
        df = pd.DataFrame(small_dict.items(), columns=['source', 'exception'])
        df.index = df.index + 1
        df.index.name = 'index'
        exceptions_html = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml')
    else:
        exceptions_html = ''

    if metadatas and exceptions:
        source_files_added = """\
        <html>
          <body>
            <p>
               {0} <br>
            </p>
               <div style="overflow-y: auto;height:400px">
               {1}
               {2}
               </div>
          </body>
        </html>
        """.format(source_label, source_files_added, exceptions_html)
    elif metadatas:
        source_files_added = """\
        <html>
          <body>
            <p>
               {0} <br>
            </p>
               <div style="overflow-y: auto;height:400px">
               {1}
               </div>
          </body>
        </html>
        """.format(source_label, source_files_added)
    elif exceptions_html:
        source_files_added = """\
        <html>
          <body>
            <p>
               Exceptions: <br>
            </p>
               <div style="overflow-y: auto;height:400px">
               {0}
               </div>
          </body>
        </html>
        """.format(exceptions_html)
    else:
        if adding_new:
            source_files_added = "No New Sources"
        else:
            source_files_added = "No Sources"

    return source_files_added


def update_and_get_source_files_given_langchain_mode(db1, langchain_mode, dbs=None, first_para=None,
                                                     text_limit=None, chunk=None, chunk_size=None,
                                                     user_path=None, db_type=None, load_db_if_exists=None,
                                                     n_jobs=None, verbose=None):
    db = get_db(db1, langchain_mode, dbs=dbs)

    from gpt_langchain import make_db
    db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=False,
                                                        hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
                                                        first_para=first_para, text_limit=text_limit,
                                                        chunk=chunk,
                                                        chunk_size=chunk_size,
                                                        langchain_mode=langchain_mode,
                                                        user_path=user_path,
                                                        db_type=db_type,
                                                        load_db_if_exists=load_db_if_exists,
                                                        db=db,
                                                        n_jobs=n_jobs,
                                                        verbose=verbose)
    # return only new sources with text saying such
    return get_source_files(db=None, exceptions=None, metadatas=new_sources_metadata)