Spaces:
Sleeping
Sleeping
File size: 11,173 Bytes
a0aa36c f671129 a0aa36c f671129 a0aa36c f671129 a0aa36c f671129 a0aa36c f671129 a0aa36c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# -*- coding: utf-8 -*-
import os
import inspect
import torch
from diffusers import StableDiffusionPipeline
from PIL import Image
import numpy as np
from torch import autocast
import cv2
import gradio as gr
# -----------------------------------------------------------------------------
# 1. REQUIREMENTS & SETUP
# -----------------------------------------------------------------------------
# To set up the environment for this script, create a file named 'requirements.txt'
# with the following content and run 'pip install -r requirements.txt':
#
# torch
# torchvision
# diffusers
# transformers
# accelerate
# gradio
# opencv-python-headless
# -----------------------------------------------------------------------------
# --- Automatic Device Detection ---
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("-------------------------------------------------")
print(f"INFO: Using device: {torch_device.upper()}")
if torch_device == "cpu":
print("WARNING: CUDA (GPU) not detected. The script will run on the CPU.")
print(" This will be extremely slow. For better performance,")
print(" please ensure you have an NVIDIA GPU and the correct")
print(" PyTorch version with CUDA support installed.")
print("-------------------------------------------------")
# --- Load the Model ---
print("Loading Stable Diffusion model... This may take a moment.")
try:
# Load the pipeline and move it to the detected device
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
pipe.to(torch_device)
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
print("Please check your internet connection and ensure the model name is correct.")
exit()
# -----------------------------------------------------------------------------
# Helper Functions (slerp, diffuse)
# -----------------------------------------------------------------------------
@torch.no_grad()
def diffuse(
pipe, cond_embeddings, cond_latents, num_inference_steps, guidance_scale, eta, device
):
# The 'device' is now passed explicitly to this function
max_length = cond_embeddings.shape[1]
uncond_input = pipe.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
# Use the passed 'device' variable for all tensor placement
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, cond_embeddings])
if "LMS" in pipe.scheduler.__class__.__name__:
cond_latents = cond_latents * pipe.scheduler.sigmas[0]
accepts_offset = "offset" in set(inspect.signature(pipe.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
pipe.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(pipe.scheduler.timesteps):
latent_model_input = torch.cat([cond_latents] * 2)
if "LMS" in pipe.scheduler.__class__.__name__:
sigma = pipe.scheduler.sigmas[i]
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"]
cond_latents = 1 / 0.18215 * cond_latents
image = pipe.vae.decode(cond_latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image[0] * 255).astype(np.uint8)
return image
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
# This function is device-agnostic
inputs_are_torch = isinstance(v0, torch.Tensor)
if inputs_are_torch:
input_device = v0.device
v0 = v0.cpu().numpy()
v1 = v1.cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(input_device)
return v2
# -----------------------------------------------------------------------------
# Main Generator Function for Gradio
# -----------------------------------------------------------------------------
def generate_dream_video(
prompt_1, prompt_2, seed_1, seed_2,
width, height, num_steps, guidance_scale,
num_inference_steps, eta, name
):
# --- 1. SETUP ---
yield {
status_text: "Status: Preparing prompts and latents...",
live_frame: None,
output_video: None,
}
prompts = [prompt_1, prompt_2]
seeds = [int(seed_1), int(seed_2)]
rootdir = './dreams'
outdir = os.path.join(rootdir, name)
os.makedirs(outdir, exist_ok=True)
# --- 2. EMBEDDINGS AND LATENTS ---
prompt_embeddings = []
for prompt in prompts:
text_input = pipe.tokenizer(prompt, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
embed = pipe.text_encoder(text_input.input_ids.to(torch_device))[0]
prompt_embeddings.append(embed)
prompt_embedding_a, prompt_embedding_b = prompt_embeddings
generator_a = torch.Generator(device=torch_device).manual_seed(seeds[0])
generator_b = torch.Generator(device=torch_device).manual_seed(seeds[1])
init_a = torch.randn((1, pipe.unet.config.in_channels, height // 8, width // 8), device=torch_device, generator=generator_a)
init_b = torch.randn((1, pipe.unet.config.in_channels, height // 8, width // 8), device=torch_device, generator=generator_b)
# --- 3. GENERATION LOOP ---
frame_paths = []
for i, t in enumerate(np.linspace(0, 1, num_steps)):
yield {
status_text: f"Status: Generating frame {i + 1} of {num_steps} on {torch_device.upper()}...",
live_frame: None,
output_video: None,
}
cond_embedding = slerp(float(t), prompt_embedding_a, prompt_embedding_b)
init = slerp(float(t), init_a, init_b)
# Use autocast only if on CUDA
with autocast(torch_device) if torch_device == "cuda" else open(os.devnull, 'w') as f:
# Pass the torch_device explicitly to the diffuse function
image = diffuse(pipe, cond_embedding, init, num_inference_steps, guidance_scale, eta, torch_device)
im = Image.fromarray(image)
outpath = os.path.join(outdir, f'frame{i:06d}.jpg')
im.save(outpath)
frame_paths.append(outpath)
yield { live_frame: im }
# --- 4. VIDEO COMPILATION ---
yield { status_text: "Status: Compiling video from frames..." }
video_path = os.path.join(outdir, f"{name}.mp4")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(video_path, fourcc, 15, (width, height))
for frame_path in frame_paths:
frame = cv2.imread(frame_path)
video_writer.write(frame)
video_writer.release()
print(f"Video saved to {video_path}")
yield {
status_text: f"Status: Done! Video saved to {video_path}",
output_video: video_path
}
# -----------------------------------------------------------------------------
# Gradio UI (Unchanged)
# -----------------------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
gr.Markdown("# 🎥 Stable Diffusion Video Interpolation")
gr.Markdown("Create smooth transition videos between two concepts. Configure the prompts and settings below, then click Generate.")
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("1. Core Prompts & Seeds", open=True):
prompt_1 = gr.Textbox(lines=2, label="Starting Prompt", value="ultrarealistic steam punk neural network machine in the shape of a brain, placed on a pedestal, covered with neurons made of gears.")
seed_1 = gr.Number(label="Seed 1", value=243, precision=0, info="A specific number to control the starting noise pattern.")
prompt_2 = gr.Textbox(lines=2, label="Ending Prompt", value="A bioluminescent, glowing jellyfish floating in a dark, deep abyss, surrounded by sparkling plankton.")
seed_2 = gr.Number(label="Seed 2", value=523, precision=0, info="A specific number to control the ending noise pattern.")
name = gr.Textbox(label="Output File Name", value="my_dream_video", info="The name for the output folder and .mp4 file.")
with gr.Accordion("2. Generation Parameters", open=True):
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=64)
num_steps = gr.Slider(label="Interpolation Frames", minimum=10, maximum=500, value=120, step=1, info="How many frames the final video will have. More frames = smoother video.")
with gr.Accordion("3. Advanced Diffusion Settings", open=False):
num_inference_steps = gr.Slider(label="Inference Steps per Frame", minimum=10, maximum=100, value=40, step=1, info="More steps can improve quality but will be much slower.")
guidance_scale = gr.Slider(label="Guidance Scale (CFG)", minimum=1, maximum=20, value=7.5, step=0.5, info="How strongly the prompt guides the image generation.")
eta = gr.Slider(label="ETA (for DDIM Scheduler)", minimum=0.0, maximum=1.0, value=0.0, step=0.1, info="A parameter for noise scheduling. 0.0 is deterministic.")
run_button = gr.Button("Generate Video", variant="primary")
with gr.Column(scale=3):
status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
live_frame = gr.Image(label="Live Preview", type="pil")
output_video = gr.Video(label="Final Video")
run_button.click(
fn=generate_dream_video,
inputs=[
prompt_1, prompt_2, seed_1, seed_2,
width, height, num_steps, guidance_scale,
num_inference_steps, eta, name
],
outputs=[status_text, live_frame, output_video]
)
# --- Launch the App ---
if __name__ == "__main__":
demo.launch(share=True, debug=True)
|