Spaces:
Sleeping
Sleeping
File size: 6,997 Bytes
581f159 58190b4 581f159 58190b4 581f159 58190b4 581f159 58190b4 581f159 58190b4 581f159 58190b4 581f159 58190b4 581f159 58190b4 581f159 58190b4 581f159 58190b4 581f159 58190b4 0be9b92 58190b4 581f159 58190b4 a0226d6 58190b4 0be9b92 58190b4 0be9b92 58190b4 e525f97 58190b4 0be9b92 c3dba91 a0226d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import re
import torch
import datetime
import json
import csv
import gc
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextIteratorStreamer
from transformers import BitsAndBytesConfig, GPTQConfig
from threading import Thread
tokenizer = None
model = None
default_cfg = {
'model_name': None,
'qtype': 'bnb',
'dtype': '4bit',
'instruction': None,
'inst_template': None,
'chat_template': None,
'max_new_tokens': 1024,
'temperature': 0.9,
'top_p': 0.95,
'top_k': 40,
'repetition_penalty': 1.2,
}
cfg = default_cfg.copy()
def load_model(model_name, qtype = 'bnb', dtype = '4bit'):
global tokenizer, model, cfg
if cfg['model_name'] == model_name and cfg['qtype'] == qtype and cfg['dtype'] == dtype:
return
del model
del tokenizer
model = None
tokenizer = None
gc.collect()
torch.cuda.empty_cache()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
match qtype:
case 'bnb':
match dtype:
case '4bit' | 'int4':
kwargs = dict(
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
),
)
case '8bit' | 'int8':
kwargs = dict(
quantization_config=BitsAndBytesConfig(
load_in_8bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
),
)
case 'fp16':
kwargs = dict(
torch_dtype=torch.float16,
)
case 'bf16':
kwargs = dict(
torch_dtype=torch.bfloat16,
)
case _:
kwargs = dict()
case 'gptq':
match dtype:
case '4bit' | 'int4':
kwargs = dict(
quantization_config=GPTQConfig(
bits=4,
tokenizer=tokenizer,
),
)
case '8bit' | 'int8':
kwargs = dict(
quantization_config=GPTQConfig(
bits=8,
tokenizer=tokenizer,
),
)
case 'gguf':
kwargs = dict(
gguf_file=qtype,
)
case 'awq':
match dtype:
case 'fa2':
kwargs = dict(
use_flash_attention_2=True,
)
case _:
kwargs = dict()
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
trust_remote_code=True,
**kwargs,
)
cfg['model_name'] = model_name
cfg['qtype'] = qtype
cfg['dtype'] = dtype
def clear_config():
global cfg
cfg = default_cfg.copy()
def set_config(model_name, qtype, dtype, instruction, inst_template, chat_template, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
global cfg
load_model(model_name, qtype, dtype)
cfg.update({
'instruction': instruction,
'inst_template': inst_template,
'chat_template': chat_template,
'max_new_tokens': int(max_new_tokens),
'temperature': float(temperature),
'top_p': float(top_p),
'top_k': int(top_k),
'repetition_penalty': float(repetition_penalty),
})
return 'done.'
def set_config_args(args):
global cfg
load_model(args['model_name'], args['qtype'], args['dtype'])
cfg.update(args)
return 'done.'
def chatinterface_to_messages(message, history):
global cfg
messages = []
if cfg['instruction']:
messages.append({'role': 'system', 'content': cfg['instruction']})
for pair in history:
[user, assistant] = pair
if user:
messages.append({'role': 'user', 'content': user})
if assistant:
messages.append({'role': 'assistant', 'content': assistant})
if message:
messages.append({'role': 'user', 'content': message})
return messages
def apply_template(messages):
global tokenizer, cfg
if cfg['chat_template']:
tokenizer.chat_template = cfg['chat_template']
if type(messages) is str:
if cfg['inst_template']:
return cfg['inst_template'].format(instruction=cfg['instruction'], input=messages)
return cfg['instruction'].format(input=messages)
if type(messages) is list:
return tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
def chat(message, history = [], instruction = None, args = {}):
global tokenizer, model, cfg
if instruction:
cfg['instruction'] = instruction
prompt = apply_template(message)
else:
messages = chatinterface_to_messages(message, history)
prompt = apply_template(messages)
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
# どうせ0固定だしエラーが出るので消してしまう
if 'token_type_ids' in model_inputs:
del model_inputs['token_type_ids']
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True,
)
generate_kwargs = dict(
model_inputs,
do_sample=True,
streamer=streamer,
num_beams=1,
)
for k in [
'max_new_tokens',
'temperature',
'top_p',
'top_k',
'repetition_penalty'
]:
if cfg[k]:
generate_kwargs[k] = cfg[k]
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
model_output = ""
for new_text in streamer:
model_output += new_text
if 'fastapi' in args:
# fastapiは差分だけを返して欲しい
yield new_text
else:
# gradioは常に全文を返して欲しい
yield model_output
def infer(message, history = [], instruction = None, args = {}):
content = ''
for s in chat(message, history, instruction, args):
content += s
return content
def numel(message, history = [], instruction = None, args = {}):
global tokenizer, model, cfg
if instruction:
cfg['instruction'] = instruction
prompt = apply_template(message)
else:
messages = chatinterface_to_messages(message, history)
prompt = apply_template(messages)
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
return torch.numel(model_inputs['input_ids'])
|