File size: 6,241 Bytes
581f159
 
 
 
 
 
 
58190b4
 
 
 
581f159
 
 
58190b4
 
 
 
 
 
 
 
 
 
 
 
 
 
581f159
58190b4
 
581f159
58190b4
581f159
 
 
 
 
 
 
 
 
 
58190b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581f159
58190b4
581f159
 
 
58190b4
581f159
 
58190b4
 
 
581f159
58190b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581f159
58190b4
 
581f159
58190b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581f159
58190b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581f159
58190b4
 
 
 
 
 
 
 
 
 
581f159
58190b4
 
 
b19aa43
58190b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import re
import torch
import datetime
import json
import csv
import gc
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextIteratorStreamer
from transformers import BitsAndBytesConfig, GPTQConfig
from threading import Thread

tokenizer = None
model = None
default_cfg = {
    'model_name': None,
    'qtype': 'bnb',
    'dtype': '4bit',
    'instruction': None,
    'inst_template': None,
    'chat_template': None,
    'max_new_tokens': 1024,
    'temperature': 0.9,
    'top_p': 0.95,
    'top_k': 40,
    'repetition_penalty': 1.2,
}
cfg = default_cfg.copy()

def load_model(model_name, qtype = 'bnb', dtype = '4bit'):
    global tokenizer, model, cfg

    if cfg['model_name'] == model_name and cfg['qtype'] == qtype and cfg['dtype'] == dtype:
        return

    del model
    del tokenizer
    model = None
    tokenizer = None
    gc.collect()
    torch.cuda.empty_cache()

    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

    match qtype:
        case 'bnb':
            match dtype:
                case '4bit' | 'int4':
                    kwargs = dict(
                        quantization_config=BitsAndBytesConfig(
                            load_in_4bit=True,
                            bnb_4bit_compute_dtype=torch.bfloat16,
                        ),
                    )
                case '8bit' | 'int8':
                    kwargs = dict(
                        quantization_config=BitsAndBytesConfig(
                            load_in_8bit=True,
                            bnb_4bit_compute_dtype=torch.bfloat16,
                        ),
                    )
                case 'fp16':
                    kwargs = dict(
                        torch_dtype=torch.float16,
                    )
                case 'bf16':
                    kwargs = dict(
                        torch_dtype=torch.bfloat16,
                    )
                case _:
                    kwargs = dict()
        case 'gptq':
            match dtype:
                case '4bit' | 'int4':
                    kwargs = dict(
                        quantization_config=GPTQConfig(
                            bits=4,
                            tokenizer=tokenizer,
                        ),
                    )
                case '8bit' | 'int8':
                    kwargs = dict(
                        quantization_config=GPTQConfig(
                            bits=8,
                            tokenizer=tokenizer,
                        ),
                    )
        case 'gguf':
            kwargs = dict(
                gguf_file=qtype,
            )
        case 'awq':
            match dtype:
                case 'fa2':
                    kwargs = dict(
                        use_flash_attention_2=True,
                    )
                case _:
                    kwargs = dict()
    
    model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto",
            trust_remote_code=True,
            **kwargs,
        )

    cfg['model_name'] = model_name
    cfg['qtype'] = qtype
    cfg['dtype'] = dtype

def clear_config():
    global cfg
    cfg = default_cfg.copy()

def set_config(model_name, qtype, dtype, instruction, inst_template, chat_template, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
    global cfg
    load_model(model_name, qtype, dtype)
    cfg.update({
        'instruction': instruction,
        'inst_template': inst_template,
        'chat_template': chat_template,
        'max_new_tokens': int(max_new_tokens),
        'temperature': float(temperature),
        'top_p': float(top_p),
        'top_k': int(top_k),
        'repetition_penalty': float(repetition_penalty),
    })
    return 'done.'

def set_config_args(args):
    global cfg

    load_model(args['model_name'], args['qtype'], args['dtype'])
    cfg.update(args)

    return 'done.'

def chatinterface_to_messages(message, history):
    global cfg

    messages = []
    
    if cfg['instruction']:
        messages.append({'role': 'system', 'content': cfg['instruction']})

    for pair in history:
        [user, assistant] = pair
        if user:
            messages.append({'role': 'user', 'content': user})
        if assistant:
            messages.append({'role': 'assistant', 'content': assistant})

    if message:
        messages.append({'role': 'user', 'content': message})

    return messages

def chat(message, history = [], instruction = None, args = {}):
    global tokenizer, model, cfg

    if instruction:
        cfg['instruction'] = instruction
        prompt = apply_template(message)
    else:
        messages = chatinterface_to_messages(message, history)
        prompt = apply_template(messages)

    model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

    streamer = TextIteratorStreamer(
        tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True,
    )

    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        do_sample=True,
        num_beams=1,
    )
    for k in [
        'max_new_tokens',
        'temperature',
        'top_p',
        'top_k',
        'repetition_penalty'
        ]:
        if cfg[k]:
            generate_kwargs[k] = cfg[k]

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    model_output = ""
    for new_text in streamer:
        model_output += new_text
        if 'fastapi' in args:
            # fastapiは差分だけを返して欲しい
            yield new_text
        else:
            # gradioは常に全文を返して欲しい
            yield model_output

    return model_output

def apply_template(messages):
    global tokenizer, cfg

    if cfg['chat_template']:
        tokenizer.chat_template = cfg['chat_template']

    if type(messages) is str:
        if cfg['inst_template']:
            return cfg['inst_template'].format(instruction=cfg['instruction'], input=messages)
        return cfg['instruction'].format(input=messages)
    if type(messages) is list:
        return tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)