Spaces:
Running
Running
File size: 29,993 Bytes
883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a 3386b63 9c845bd 883ad5a 3386b63 c3be2f9 883ad5a 66cf2b6 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a 66cf2b6 883ad5a 296aa0d 9c845bd 296aa0d 82f22f3 ef71403 296aa0d 82f22f3 296aa0d 82f22f3 296aa0d 82f22f3 296aa0d 883ad5a 66cf2b6 883ad5a 66cf2b6 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 0fad5b5 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a 9c845bd e465a59 883ad5a e465a59 883ad5a e465a59 9c845bd e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a afa582c e465a59 883ad5a e465a59 883ad5a e465a59 afa582c e465a59 afa582c e465a59 883ad5a e465a59 883ad5a e465a59 265750f 9c845bd e465a59 d32f6d5 e465a59 9c845bd e465a59 883ad5a e465a59 883ad5a e465a59 883ad5a 9c845bd e465a59 9c845bd 276edb7 0abf4be 276edb7 b9766e7 0abf4be b9766e7 276edb7 b9766e7 276edb7 b9766e7 276edb7 0abf4be b9766e7 276edb7 883ad5a b9766e7 e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd e465a59 9c845bd 909cd08 e465a59 12b083f e465a59 9c845bd e465a59 9c845bd e465a59 66cf2b6 e465a59 9c845bd 276edb7 9c845bd b9766e7 9c845bd b9766e7 9c845bd b9766e7 9c845bd 276edb7 9c845bd b9766e7 9c845bd e465a59 9c845bd e465a59 9c845bd 909cd08 9c845bd e465a59 66cf2b6 9c845bd 883ad5a e465a59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import streamlit as st
import pandas as pd
import json
import os
from pydantic import BaseModel, Field
from typing import List, Set, Dict, Any, Optional # Already have these, but commented for brevity if not all used
import time # Added for potential small delays if needed
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage # Not directly used in provided snippet
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser # Not directly used in provided snippet
from langchain_core.prompts import PromptTemplate # Not directly used in provided snippet
import gspread
import tempfile
import time
from google.oauth2 import service_account
import tiktoken
st.set_page_config(
page_title="Candidate Matching App",
page_icon="👨💻🎯",
layout="wide"
)
os.environ["STREAMLIT_HOME"] = tempfile.gettempdir()
os.environ["STREAMLIT_DISABLE_TELEMETRY"] = "1"
# Define pydantic model for structured output
class Shortlist(BaseModel):
fit_score: float = Field(description="A score between 0 and 10 indicating how closely the candidate profile matches the job requirements upto 3 decimal points.")
candidate_name: str = Field(description="The name of the candidate.")
candidate_url: str = Field(description="The URL of the candidate's LinkedIn profile.")
candidate_summary: str = Field(description="A brief summary of the candidate's skills and experience along with its educational background.")
candidate_location: str = Field(description="The location of the candidate.")
justification: str = Field(description="Justification for the shortlisted candidate with the fit score")
# Function to calculate tokens
def calculate_tokens(text, model="gpt-4o-mini"):
try:
if "gpt-4" in model:
encoding = tiktoken.encoding_for_model("gpt-4o-mini")
elif "gpt-3.5" in model:
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
else:
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(text))
except Exception as e:
return len(text) // 4
# Function to display token usage
def display_token_usage():
if 'total_input_tokens' not in st.session_state:
st.session_state.total_input_tokens = 0
if 'total_output_tokens' not in st.session_state:
st.session_state.total_output_tokens = 0
total_input = st.session_state.total_input_tokens
total_output = st.session_state.total_output_tokens
total_tokens = total_input + total_output
model_to_check = st.session_state.get('model_name', "gpt-4o-mini") # Use a default if not set
if model_to_check == "gpt-4o-mini":
input_cost_per_1k = 0.00015 # Adjusted to example rates ($0.15 / 1M tokens)
output_cost_per_1k = 0.0006 # Adjusted to example rates ($0.60 / 1M tokens)
elif "gpt-4" in model_to_check: # Fallback for other gpt-4
input_cost_per_1k = 0.005
output_cost_per_1k = 0.015 # General gpt-4 pricing can vary
else: # Assume gpt-3.5-turbo pricing
input_cost_per_1k = 0.0005 # $0.0005 per 1K input tokens
output_cost_per_1k = 0.0015 # $0.0015 per 1K output tokens
estimated_cost = (total_input / 1000 * input_cost_per_1k) + (total_output / 1000 * output_cost_per_1k)
st.subheader("📊 Token Usage Statistics (for last processed job)")
col1, col2, col3 = st.columns(3)
with col1: st.metric("Input Tokens", f"{total_input:,}")
with col2: st.metric("Output Tokens", f"{total_output:,}")
with col3: st.metric("Total Tokens", f"{total_tokens:,}")
st.markdown(f"**Estimated Cost:** ${estimated_cost:.4f}")
return total_tokens
# Function to parse and normalize tech stacks
def parse_tech_stack(stack):
if pd.isna(stack) or stack == "" or stack is None: return set()
if isinstance(stack, set): return stack
try:
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
items = stack.strip("{}").split(",")
return set(item.strip().strip("'\"") for item in items if item.strip())
return set(map(lambda x: x.strip().lower(), str(stack).split(',')))
except Exception as e:
st.error(f"Error parsing tech stack: {e}")
return set()
def display_tech_stack(stack_set):
return ", ".join(sorted(list(stack_set))) if isinstance(stack_set, set) else str(stack_set)
def get_matching_candidates(job_stack, candidates_df):
matched = []
job_stack_set = parse_tech_stack(job_stack)
for _, candidate in candidates_df.iterrows():
candidate_stack = parse_tech_stack(candidate['Key Tech Stack'])
common = job_stack_set & candidate_stack
if len(common) >= 2: # Original condition
matched.append({
"Name": candidate["Full Name"], "URL": candidate["LinkedIn URL"],
"Degree & Education": candidate["Degree & University"],
"Years of Experience": candidate["Years of Experience"],
"Current Title & Company": candidate['Current Title & Company'],
"Key Highlights": candidate["Key Highlights"],
"Location": candidate["Location (from most recent experience)"],
"Experience": str(candidate["Experience"]), "Tech Stack": candidate_stack
})
return matched
def setup_llm():
"""Set up the LangChain LLM with structured output"""
# Define the model to use
model_name = "gpt-4o-mini"
# Store model name in session state for token calculation
if 'model_name' not in st.session_state:
st.session_state.model_name = model_name
# Create LLM instance
llm = ChatOpenAI(
model=model_name,
temperature=0.3,
max_tokens=None,
timeout=None,
max_retries=2,
)
# Create structured output
sum_llm = llm.with_structured_output(Shortlist)
# Create system prompt
system = """You are an expert Tech Recruiter. For each candidate–job pair, follow these steps and show your chain of thought before giving a final Fit Score (0–10):
1. LOCATION CHECK (Hard Disqualification)
- If candidate’s location lies outside the job’s required location, immediately reject (Score 1–5) with reasoning “Location mismatch.”
2. HARD DISQUALIFICATIONS (Auto-reject, Score 1–5)
- No VC-backed startup experience (Seed–Series C/D)
- Only Big Tech or corporate labs, with no startup follow-on
- < 3 years post-graduate SWE experience
- More than one role < 2 years (unless due to M&A or shutdown)
- Career centered on enterprise/consulting firms (e.g., Infosys, Wipro, Cognizant, Tata, Capgemini, Dell, Cisco)
- Visa dependency (H1B/OPT/TN) unless explicitly allowed
3. EDUCATION & STARTUP EXPERIENCE SCORING
- **Tier 1 (Max points):** MIT, Stanford, CMU, UC Berkeley, Caltech, Harvard, IIT Bombay, IIT Delhi, Princeton, UIUC, UW, Columbia, UChicago, Cornell, UM-Ann Arbor, UT Austin, Waterloo, U Toronto
- **Tier 2 (Moderate points):** UC Davis, Georgia Tech, Purdue, UMass Amherst, etc.
- **Tier 3 (Low points):** Other or unranked institutions
- Assume CS degree for all; use university field to assign tier
- Validate startup’s funding stage via Crunchbase/Pitchbook; preferred investors include YC, Sequoia, a16z, Accel, Founders Fund, Lightspeed, Greylock, Benchmark, Index Ventures
4. WEIGHTED FIT SCORE COMPONENTS (Qualified candidates only)
- Engineering & Problem Solving: 20%
- Product Experience (built systems end-to-end): 20%
- Startup Experience (time at VC-backed roles): 20%
- Tech Stack Alignment: 15%
- Tenure & Stability (≥ 2 years per role): 15%
- Domain Relevance (industry match): 10% :
5. ADJACENT COMPANY MATCHING
- If startup funding can’t be verified, suggest similar-stage companies in the same market and justify
**Output:**
- **Chain of Thought:** bullet points for each step above
- **Final Fit Score:** X.X/10 and classification
- 1–5: Poor Fit (Auto-reject)
- 6–7: Weak Fit (Auto-reject)
- 8.0–8.7: Moderate Fit (Auto-reject)
- 8.8–10: Strong Fit (Include in results)
"""
# Create query prompt
query_prompt = ChatPromptTemplate.from_messages([
("system", system),
("human", """
You are an expert Recruitor. Your task is to determine if the candidate matches the given job.
Provide the score as a `float` rounded to exactly **three decimal places** (e.g., 8.943, 9.211, etc.).
Avoid rounding to whole or one-decimal numbers. Every candidate should have a **unique** fit score.
For this you will be provided with the follwing inputs of job and candidates:
Job Details
Company: {Company}
Role: {Role}
About Company: {desc}
Locations: {Locations}
Tech Stack: {Tech_Stack}
Industry: {Industry}
Candidate Details:
Full Name: {Full_Name}
LinkedIn URL: {LinkedIn_URL}
Current Title & Company: {Current_Title_Company}
Years of Experience: {Years_of_Experience}
Degree & University: {Degree_University}
Key Tech Stack: {Key_Tech_Stack}
Key Highlights: {Key_Highlights}
Location (from most recent experience): {cand_Location}
Past_Experience: {Experience}
Answer in the structured manner as per the schema.
If any parameter is Unknown try not to include in the summary, only include those parameters which are known.
The `fit_score` must be a float with **exactly three decimal digits** (e.g. 8.812, 9.006). Do not round to 1 or 2 decimals.
"""),
])
# Chain the prompt and LLM
cat_class = query_prompt | sum_llm
return cat_class
def call_llm(candidate_data, job_data, llm_chain):
try:
job_tech_stack = ", ".join(sorted(list(job_data.get("Tech_Stack", set())))) if isinstance(job_data.get("Tech_Stack"), set) else job_data.get("Tech_Stack", "")
candidate_tech_stack = ", ".join(sorted(list(candidate_data.get("Tech Stack", set())))) if isinstance(candidate_data.get("Tech Stack"), set) else candidate_data.get("Tech Stack", "")
payload = {
"Company": job_data.get("Company", ""), "Role": job_data.get("Role", ""),
"desc": job_data.get("desc", ""), "Locations": job_data.get("Locations", ""),
"Tech_Stack": job_tech_stack, "Industry": job_data.get("Industry", ""),
"Full_Name": candidate_data.get("Name", ""), "LinkedIn_URL": candidate_data.get("URL", ""),
"Current_Title_Company": candidate_data.get("Current Title & Company", ""),
"Years_of_Experience": candidate_data.get("Years of Experience", ""),
"Degree_University": candidate_data.get("Degree & Education", ""),
"Key_Tech_Stack": candidate_tech_stack, "Key_Highlights": candidate_data.get("Key Highlights", ""),
"cand_Location": candidate_data.get("Location", ""), "Experience": candidate_data.get("Experience", "")
}
payload_str = json.dumps(payload)
input_tokens = calculate_tokens(payload_str, st.session_state.model_name)
response = llm_chain.invoke(payload)
# print(candidate_data.get("Experience", "")) # Kept for your debugging if needed
response_str = f"candidate_name: {response.candidate_name} URL:{response.candidate_url} summ:{response.candidate_summary} loc: {response.candidate_location} just {response.justification} fit_score: {float(f'{response.fit_score:.3f}')}." # Truncated
output_tokens = calculate_tokens(response_str, st.session_state.model_name)
if 'total_input_tokens' not in st.session_state: st.session_state.total_input_tokens = 0
if 'total_output_tokens' not in st.session_state: st.session_state.total_output_tokens = 0
st.session_state.total_input_tokens += input_tokens
st.session_state.total_output_tokens += output_tokens
return {
"candidate_name": response.candidate_name, "candidate_url": response.candidate_url,
"candidate_summary": response.candidate_summary, "candidate_location": response.candidate_location,
"fit_score": response.fit_score, "justification": response.justification
}
except Exception as e:
st.error(f"Error calling LLM for {candidate_data.get('Name', 'Unknown')}: {e}")
return {
"candidate_name": candidate_data.get("Name", "Unknown"), "candidate_url": candidate_data.get("URL", ""),
"candidate_summary": "Error processing candidate profile", "candidate_location": candidate_data.get("Location", "Unknown"),
"fit_score": 0.0, "justification": f"Error in LLM processing: {str(e)}"
}
def process_candidates_for_job(job_row, candidates_df, llm_chain=None):
st.session_state.total_input_tokens = 0 # Reset for this job
st.session_state.total_output_tokens = 0
if llm_chain is None:
with st.spinner("Setting up LLM..."): llm_chain = setup_llm()
selected_candidates = []
job_data = {
"Company": job_row["Company"], "Role": job_row["Role"], "desc": job_row.get("One liner", ""),
"Locations": job_row.get("Locations", ""), "Tech_Stack": job_row["Tech Stack"], "Industry": job_row.get("Industry", "")
}
with st.spinner("Finding matching candidates based on tech stack..."):
matching_candidates = get_matching_candidates(job_row["Tech Stack"], candidates_df)
if not matching_candidates:
st.warning("No candidates with matching tech stack found for this job.")
return []
st.success(f"Found {len(matching_candidates)} candidates with matching tech stack. Evaluating with LLM...")
candidates_progress = st.progress(0)
candidate_status = st.empty() # For live updates
for i, candidate_data in enumerate(matching_candidates):
# *** MODIFICATION: Check for stop flag ***
if st.session_state.get('stop_processing_flag', False):
candidate_status.warning("Processing stopped by user.")
time.sleep(1) # Allow message to be seen
break
candidate_status.text(f"Evaluating candidate {i+1}/{len(matching_candidates)}: {candidate_data.get('Name', 'Unknown')}")
response = call_llm(candidate_data, job_data, llm_chain)
response_dict = {
"Name": response["candidate_name"], "LinkedIn": response["candidate_url"],
"summary": response["candidate_summary"], "Location": response["candidate_location"],
"Fit Score": float(f"{response['fit_score']:.3f}"), "justification": response["justification"],
"Educational Background": candidate_data.get("Degree & Education", ""),
"Years of Experience": candidate_data.get("Years of Experience", ""),
"Current Title & Company": candidate_data.get("Current Title & Company", "")
}
# *** MODIFICATION: Live output of candidate dicts - will disappear on rerun after processing ***
if response["fit_score"] >= 8.800:
selected_candidates.append(response_dict)
# This st.markdown will be visible during processing and cleared on the next full script rerun
# after this processing block finishes or is stopped.
st.markdown(
f"**Selected Candidate:** [{response_dict['Name']}]({response_dict['LinkedIn']}) "
f"(Score: {response_dict['Fit Score']:.3f}, Location: {response_dict['Location']})"
)
candidates_progress.progress((i + 1) / len(matching_candidates))
candidates_progress.empty()
candidate_status.empty()
if not st.session_state.get('stop_processing_flag', False): # Only show if not stopped
if selected_candidates:
st.success(f"✅ LLM evaluation complete. Found {len(selected_candidates)} suitable candidates for this job!")
else:
st.info("LLM evaluation complete. No candidates met the minimum fit score threshold for this job.")
return selected_candidates
def main():
st.title("👨💻 Candidate Matching App")
if 'processed_jobs' not in st.session_state: st.session_state.processed_jobs = {} # May not be used with new logic
if 'Selected_Candidates' not in st.session_state: st.session_state.Selected_Candidates = {}
if 'llm_chain' not in st.session_state: st.session_state.llm_chain = None # Initialize to None
# *** MODIFICATION: Initialize stop flag ***
if 'stop_processing_flag' not in st.session_state: st.session_state.stop_processing_flag = False
st.write("This app matches job listings with candidate profiles...")
with st.sidebar:
st.header("API Configuration")
api_key = st.text_input("Enter OpenAI API Key", type="password", key="api_key_input")
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
SERVICE_ACCOUNT_FILE = 'src/synapse-recruitment-e94255ca76fd.json' # Ensure this path is correct
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
# Initialize LLM chain once API key is set
if st.session_state.llm_chain is None:
with st.spinner("Setting up LLM..."):
st.session_state.llm_chain = setup_llm()
st.success("API Key set")
else:
st.warning("Please enter OpenAI API Key to use LLM features")
st.session_state.llm_chain = None # Clear chain if key removed
try:
gc = gspread.authorize(creds)
job_sheet = gc.open_by_key('1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k')
candidates_sheet = gc.open_by_key('1u_9o5f0MPHFUSScjEcnA8Lojm4Y9m9LuWhvjYm6ytF4')
except Exception as e:
st.error(f"Failed to connect to Google Sheets. Please Ensure the API key is correct")
st.stop()
if not os.environ.get("OPENAI_API_KEY"):
st.warning("⚠️ You need to provide an OpenAI API key in the sidebar to use this app.")
st.stop()
if st.session_state.llm_chain is None and os.environ.get("OPENAI_API_KEY"):
with st.spinner("Setting up LLM..."):
st.session_state.llm_chain = setup_llm()
st.rerun() # Rerun to ensure LLM is ready for the main display logic
try:
job_worksheet = job_sheet.worksheet('paraform_jobs_formatted')
job_data = job_worksheet.get_all_values()
candidate_worksheet = candidates_sheet.worksheet('transformed_candidates_updated')
candidate_data = candidate_worksheet.get_all_values()
jobs_df = pd.DataFrame(job_data[1:], columns=job_data[0]).drop(["Link"], axis=1, errors='ignore')
jobs_df1 = jobs_df[["Company","Role","One liner","Locations","Tech Stack","Workplace","Industry","YOE"]]
jobs_df1 = jobs_df1.fillna("Unknown")
candidates_df = pd.DataFrame(candidate_data[1:], columns=candidate_data[0]).fillna("Unknown")
candidates_df.drop_duplicates(subset=['Full Name'], keep='first', inplace=True)
with st.expander("Preview uploaded data"):
st.subheader("Jobs Data Preview"); st.dataframe(jobs_df1.head(5))
# Column mapping (simplified, ensure your CSVs have these exact names or adjust)
# candidates_df = candidates_df.rename(columns={...}) # Add if needed
display_job_selection(jobs_df, candidates_df, job_sheet) # job_sheet is 'sh'
except Exception as e:
st.error(f"Error processing files or data: {e}")
st.divider()
def display_job_selection(jobs_df, candidates_df, sh):
st.subheader("Select a job to view potential matches")
job_options = [f"{row['Role']} at {row['Company']}" for _, row in jobs_df.iterrows()]
if 'last_selected_job_index' not in st.session_state:
st.session_state.last_selected_job_index = 0
selected_job_index = st.selectbox(
"Jobs:",
range(len(job_options)),
format_func=lambda x: job_options[x],
key="job_selectbox"
)
# Clear previous job state when a new job is selected
if selected_job_index != st.session_state.last_selected_job_index:
old_job_key = st.session_state.last_selected_job_index
job_processed_key = f"job_{old_job_key}_processed_successfully"
job_is_processing_key = f"job_{old_job_key}_is_currently_processing"
# Remove old job flags
for key in [job_processed_key, job_is_processing_key, 'stop_processing_flag', 'total_input_tokens', 'total_output_tokens']:
st.session_state.pop(key, None)
# Clear selected candidates for old job if they exist
if 'Selected_Candidates' in st.session_state:
st.session_state.Selected_Candidates.pop(old_job_key, None)
# Clear cache to avoid old data in UI
st.cache_data.clear()
# Update last selected job index
st.session_state.last_selected_job_index = selected_job_index
# Rerun to refresh UI and prevent stale data
st.rerun()
# Ensure Selected_Candidates is initialized for the new job
if 'Selected_Candidates' not in st.session_state:
st.session_state.Selected_Candidates = {}
if selected_job_index not in st.session_state.Selected_Candidates:
st.session_state.Selected_Candidates[selected_job_index] = []
# Proceed with job details
job_row = jobs_df.iloc[selected_job_index]
job_row_stack = parse_tech_stack(job_row["Tech Stack"])
col_job_details_display, _ = st.columns([2, 1])
with col_job_details_display:
st.subheader(f"Job Details: {job_row['Role']}")
job_details_dict = {
"Company": job_row["Company"],
"Role": job_row["Role"],
"Description": job_row.get("One liner", "N/A"),
"Locations": job_row.get("Locations", "N/A"),
"Industry": job_row.get("Industry", "N/A"),
"Tech Stack": display_tech_stack(job_row_stack)
}
for key, value in job_details_dict.items():
st.markdown(f"**{key}:** {value}")
job_processed_key = f"job_{selected_job_index}_processed_successfully"
job_is_processing_key = f"job_{selected_job_index}_is_currently_processing"
st.session_state.setdefault(job_processed_key, False)
st.session_state.setdefault(job_is_processing_key, False)
sheet_name = f"{job_row['Role']} at {job_row['Company']}".strip()[:100]
worksheet_exists = False
existing_candidates_from_sheet = []
try:
cand_ws = sh.worksheet(sheet_name)
worksheet_exists = True
data = cand_ws.get_all_values()
if len(data) > 1:
existing_candidates_from_sheet = data
except Exception:
pass
if not st.session_state[job_processed_key] or existing_candidates_from_sheet:
col_find, col_stop = st.columns(2)
with col_find:
if st.button("Find Matching Candidates for this Job", key=f"find_btn_{selected_job_index}",
disabled=st.session_state[job_is_processing_key]):
if not os.environ.get("OPENAI_API_KEY") or st.session_state.llm_chain is None:
st.error("OpenAI API key not set or LLM not initialized.")
else:
st.session_state[job_is_processing_key] = True
st.session_state.stop_processing_flag = False
st.session_state.Selected_Candidates[selected_job_index] = []
st.rerun()
with col_stop:
if st.session_state[job_is_processing_key]:
if st.button("STOP Processing", key=f"stop_btn_{selected_job_index}"):
st.session_state.stop_processing_flag = True
st.cache_data.clear()
st.warning("Stop request sent. Processing will halt shortly.")
st.rerun()
if st.session_state[job_is_processing_key]:
with st.spinner(f"Processing candidates for {job_row['Role']} at {job_row['Company']}..."):
processed_list = process_candidates_for_job(job_row, candidates_df, st.session_state.llm_chain)
st.session_state[job_is_processing_key] = False
if not st.session_state.get('stop_processing_flag', False):
if processed_list:
processed_list.sort(key=lambda x: x.get("Fit Score", 0.0), reverse=True)
st.session_state.Selected_Candidates[selected_job_index] = processed_list
st.session_state[job_processed_key] = True
try:
target_ws = sh.worksheet(sheet_name) if worksheet_exists else sh.add_worksheet(
title=sheet_name, rows=max(100, len(processed_list)+10), cols=20)
headers = list(processed_list[0].keys())
rows = [headers] + [[str(c.get(h, "")) for h in headers] for c in processed_list]
target_ws.clear()
target_ws.update('A1', rows)
st.success(f"Results saved to Google Sheet: '{sheet_name}'")
except Exception as e:
st.error(f"Error writing to Google Sheet '{sheet_name}': {e}")
else:
st.info("No suitable candidates found after processing.")
st.session_state.Selected_Candidates[selected_job_index] = []
st.session_state[job_processed_key] = True
else:
st.info("Processing was stopped by user.")
st.session_state[job_processed_key] = False
st.session_state.Selected_Candidates[selected_job_index] = []
st.session_state.pop('stop_processing_flag', None)
st.rerun()
should_display = False
final_candidates = []
if not st.session_state[job_is_processing_key]:
if st.session_state[job_processed_key]:
should_display = True
final_candidates = st.session_state.Selected_Candidates.get(selected_job_index, [])
elif existing_candidates_from_sheet:
should_display = True
headers = existing_candidates_from_sheet[0]
for row in existing_candidates_from_sheet[1:]:
cand = {headers[i]: row[i] if i < len(row) else None for i in range(len(headers))}
try: cand['Fit Score'] = float(cand.get('Fit Score', 0))
except: cand['Fit Score'] = 0.0
final_candidates.append(cand)
final_candidates.sort(key=lambda x: x.get('Fit Score', 0.0), reverse=True)
if should_display:
col_title, col_copyall = st.columns([3, 1])
with col_title:
st.subheader("Selected Candidates")
with col_copyall:
combined_text = ""
for cand in final_candidates:
combined_text += f"Name: {cand.get('Name','N/A')}\nLinkedIn URL: {cand.get('LinkedIn','N/A')}\n\n"
import json
html = f'''
<button id="copy-all-btn">📋 Copy All</button>
<script>
const combinedText = {json.dumps(combined_text)};
document.getElementById("copy-all-btn").onclick = () => {{
navigator.clipboard.writeText(combinedText);
}};
</script>
'''
st.components.v1.html(html, height=60)
if st.session_state.get(job_processed_key) and (
st.session_state.get('total_input_tokens',0) > 0 or st.session_state.get('total_output_tokens',0) > 0):
display_token_usage()
for i, candidate in enumerate(final_candidates):
score = candidate.get('Fit Score', 0.0)
score_display = f"{score:.3f}" if isinstance(score, (int, float)) else score
exp_title = f"{i+1}. {candidate.get('Name','N/A')} (Score: {score_display})"
with st.expander(exp_title):
text_copy = f"Candidate: {candidate.get('Name','N/A')}\nLinkedIn: {candidate.get('LinkedIn','N/A')}\n"
btn = f"copy_btn_job{selected_job_index}_cand{i}"
js = f'''
<script>
function copyToClipboard_{btn}() {{ navigator.clipboard.writeText(`{text_copy}`); }}
</script>
<button onclick="copyToClipboard_{btn}()">📋 Copy Details</button>
'''
cols = st.columns([0.82,0.18])
with cols[1]: st.components.v1.html(js, height=40)
with cols[0]:
st.markdown(f"**Summary:** {candidate.get('summary','N/A')}")
st.markdown(f"**Current:** {candidate.get('Current Title & Company','N/A')}")
st.markdown(f"**Education:** {candidate.get('Educational Background','N/A')}")
st.markdown(f"**Experience:** {candidate.get('Years of Experience','N/A')}")
st.markdown(f"**Location:** {candidate.get('Location','N/A')}")
if candidate.get('LinkedIn'):
st.markdown(f"**[LinkedIn Profile]({candidate['LinkedIn']})**")
if candidate.get('justification'):
st.markdown("**Justification:**")
st.info(candidate['justification'])
if st.button("Reset and Process Again", key=f"reset_btn_{selected_job_index}"):
st.session_state[job_processed_key] = False
st.session_state.pop(job_is_processing_key, None)
st.session_state.Selected_Candidates.pop(selected_job_index, None)
st.cache_data.clear()
try: sh.worksheet(sheet_name).clear()
except: pass
st.rerun()
if __name__ == "__main__":
main()
|