Spaces:
Runtime error
Runtime error
File size: 10,511 Bytes
5775680 026e9d4 94b0e7c 5775680 94b0e7c 5775680 94b0e7c 5775680 026e9d4 5775680 94b0e7c 5775680 94b0e7c 5775680 026e9d4 5775680 026e9d4 5775680 d273f14 5775680 94b0e7c 5775680 d273f14 026e9d4 5775680 d273f14 5775680 c63015b 94b0e7c 5775680 94b0e7c 5775680 94b0e7c 5775680 94b0e7c 5775680 dc63d14 9802396 5775680 94b0e7c 9802396 5775680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import time
import streamlit as st
import torch
import string
from annotated_text import annotated_text
from flair.data import Sentence
from flair.models import SequenceTagger
from transformers import BertTokenizer, BertForMaskedLM
import BatchInference as bd
import batched_main_NER as ner
import aggregate_server_json as aggr
import json
DEFAULT_TOP_K = 20
SPECIFIC_TAG=":__entity__"
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def POS_get_model(model_name):
val = SequenceTagger.load(model_name) # Load the model
return val
def getPos(s: Sentence):
texts = []
labels = []
for t in s.tokens:
for label in t.annotation_layers.keys():
texts.append(t.text)
labels.append(t.get_labels(label)[0].value)
return texts, labels
def getDictFromPOS(texts, labels):
return [["dummy",t,l,"dummy","dummy" ] for t, l in zip(texts, labels)]
def decode(tokenizer, pred_idx, top_clean):
ignore_tokens = string.punctuation + '[PAD]'
tokens = []
for w in pred_idx:
token = ''.join(tokenizer.decode(w).split())
if token not in ignore_tokens:
tokens.append(token.replace('##', ''))
return '\n'.join(tokens[:top_clean])
def encode(tokenizer, text_sentence, add_special_tokens=True):
text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token)
# if <mask> is the last token, append a "." so that models dont predict punctuation.
if tokenizer.mask_token == text_sentence.split()[-1]:
text_sentence += ' .'
input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)])
mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0]
return input_ids, mask_idx
def get_all_predictions(text_sentence, top_clean=5):
# ========================= BERT =================================
input_ids, mask_idx = encode(bert_tokenizer, text_sentence)
with torch.no_grad():
predict = bert_model(input_ids)[0]
bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean)
return {'bert': bert}
def get_bert_prediction(input_text,top_k):
try:
input_text += ' <mask>'
res = get_all_predictions(input_text, top_clean=int(top_k))
return res
except Exception as error:
pass
def load_pos_model():
checkpoint = "flair/pos-english"
return POS_get_model(checkpoint)
def init_session_states():
if 'top_k' not in st.session_state:
st.session_state['top_k'] = 20
if 'pos_model' not in st.session_state:
st.session_state['pos_model'] = None
if 'bio_model' not in st.session_state:
st.session_state['bio_model'] = None
if 'ner_bio' not in st.session_state:
st.session_state['ner_bio'] = None
if 'aggr' not in st.session_state:
st.session_state['aggr'] = None
def get_pos_arr(input_text,display_area):
if (st.session_state['pos_model'] is None):
display_area.text("Loading model 3 of 3.Loading POS model...")
st.session_state['pos_model'] = load_pos_model()
s = Sentence(input_text)
st.session_state['pos_model'].predict(s)
texts, labels = getPos(s)
pos_results = getDictFromPOS(texts, labels)
return pos_results
def perform_inference(text,display_area):
if (st.session_state['bio_model'] is None):
display_area.text("Loading model 1 of 2. Bio model...")
st.session_state['bio_model'] = bd.BatchInference("bio/desc_a100_config.json",'ajitrajasekharan/biomedical',False,False,DEFAULT_TOP_K,True,True, "bio/","bio/a100_labels.txt",False)
#Load POS model if needed and gets POS tags
if (SPECIFIC_TAG not in text):
pos_arr = get_pos_arr(text,display_area)
else:
pos_arr = None
if (st.session_state['ner_bio'] is None):
display_area.text("Initializing BIO module...")
st.session_state['ner_bio'] = ner.UnsupNER("bio/ner_a100_config.json")
if (st.session_state['aggr'] is None):
display_area.text("Initializing Aggregation module...")
st.session_state['aggr'] = aggr.AggregateNER("./ensemble_config.json")
display_area.text("Getting predictions from BIO model...")
bio_descs = st.session_state['bio_model'].get_descriptors(text,pos_arr)
display_area.text("Computing BIO results...")
bio_ner = st.session_state['ner_bio'].tag_sentence_service(text,bio_descs)
obj = json.loads(bio_ner)
combined_arr = [obj,obj]
aggregate_results = st.session_state['aggr'].fetch_all(text,combined_arr)
return aggregate_results
sent_arr = [
"Lou Gehrig who works for XCorp and lives in New York suffers from Parkinson's ",
"Parkinson who works for XCorp and lives in New York suffers from Lou Gehrig's",
"Her hypophysitis secondary to ipilimumab was well managed with supplemental hormones",
"lou gehrig was diagnosed with Parkinson's ",
"A eGFR below 60 indicates chronic kidney disease",
"Overexpression of EGFR occurs across a wide range of different cancers",
"He was diagnosed with non small cell lung cancer",
"There are no treatment options specifically indicated for ACD and physicians must utilize agents approved for other dermatology conditions",
"As ACD has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs ",
"Patients treated with anticancer chemotherapy drugs ( ACD ) are vulnerable to infectious diseases due to immunosuppression and to the direct impact of ACD on their intestinal microbiota ",
"In the LASOR trial , increasing daily imatinib dose from 400 to 600mg induced MMR at 12 and 24 months in 25% and 36% of the patients, respectively, who had suboptimal cytogenetic responses "
]
sent_arr_masked = [
"Lou:__entity__ Gehrig:__entity__ who works for XCorp and lives in New York suffers from Parkinson's:__entity__ ",
"Parkinson:__entity__ who works for XCorp and lives in New York suffers from Lou Gehrig's:__entity__",
"Her hypophysitis:__entity__ secondary to ipilimumab:__entity__ was well managed with supplemental:__entity__ hormones:__entity__",
"lou:__entity__ gehrig:__entity__ was diagnosed with Parkinson's:__entity__ ",
"A eGFR:__entity__ below 60 indicates chronic kidney disease",
"Overexpression of EGFR:__entity__ occurs across a wide range of different cancers",
"He was diagnosed with non:__entity__ small:__entity__ cell:__entity__ lung:__entity__ cancer:__entity__",
"There are no treatment options specifically indicated for ACD:__entity__ and physicians must utilize agents approved for other dermatology conditions",
"As ACD:__entity__ has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs ",
"Patients treated with anticancer chemotherapy drugs ( ACD:__entity__ ) are vulnerable to infectious diseases due to immunosuppression and to the direct impact of ACD on their intestinal microbiota ",
"In the LASOR:__entity__ trial:__entity__ , increasing daily imatinib dose from 400 to 600mg induced MMR at 12 and 24 months in 25% and 36% of the patients, respectively, who had suboptimal cytogenetic responses "
]
def init_selectbox():
return st.selectbox(
'Choose any of the sentences in pull-down below',
sent_arr,key='my_choice')
def on_text_change():
text = st.session_state.my_text
print("in callback: " + text)
perform_inference(text)
def main():
try:
init_session_states()
st.markdown("<h3 style='text-align: center;'>Biomedical NER using a pretrained model with <a href='https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html'>no fine tuning</a></h3>", unsafe_allow_html=True)
#st.markdown("""
#<h3 style="font-size:16px; color: #ff0000; text-align: center"><b>App under construction... (not in working condition yet)</b></h3>
#""", unsafe_allow_html=True)
#st.markdown("""
#<p style="text-align:center;"><img src="https://ajitrajasekharan.github.io/images/1.png" width="700"></p>
# <br/>
# <br/>
#""", unsafe_allow_html=True)
st.write("This app uses 2 models. A Bert model pretrained (**no fine tuning**) on biomedical corpus, and a POS tagger")
with st.form('my_form'):
selected_sentence = init_selectbox()
text_input = st.text_area(label='Type any sentence below',value="")
submit_button = st.form_submit_button('Submit')
input_status_area = st.empty()
display_area = st.empty()
if submit_button:
start = time.time()
if (len(text_input) == 0):
text_input = sent_arr_masked[sent_arr.index(selected_sentence)]
input_status_area.text("Input sentence: " + text_input)
results = perform_inference(text_input,display_area)
display_area.empty()
with display_area.container():
st.text(f"prediction took {time.time() - start:.2f}s")
st.json(results)
st.markdown("""
<small style="font-size:16px; color: #7f7f7f; text-align: left"><i> <b>Note:</b>In the example test sentences above, only biomedical entities are tagged for prediction;
PHI entities are not tagged. To see valid predictions for both biomedical and PHI entities <a href=https://huggingface.co/spaces/ajitrajasekharan/NER-Biomedical-PHI-Ensemble' target='_blank'>test this ensemble app</a></small>
""", unsafe_allow_html=True)
st.markdown("""
<small style="font-size:16px; color: #7f7f7f; text-align: left"><br/><br/>Models used: <br/>(1) <a href='https://huggingface.co/ajitrajasekharan/biomedical' target='_blank'>Biomedical model</a> pretrained on Pubmed,Clinical trials and BookCorpus subset.<br/>(2) Flair POS tagger</small>
""", unsafe_allow_html=True)
st.markdown("""
<h3 style="font-size:16px; color: #9f9f9f; text-align: center"><b> <a href='https://huggingface.co/spaces/ajitrajasekharan/Qualitative-pretrained-model-evaluation' target='_blank'>App link to examine pretrained models</a> used to perform NER without fine tuning</b></h3>
""", unsafe_allow_html=True)
st.markdown("""
<h3 style="font-size:16px; color: #9f9f9f; text-align: center">Github <a href='http://github.com/ajitrajasekharan/unsupervised_NER' target='_blank'>link to same working code </a>(without UI) as separate microservices</h3>
""", unsafe_allow_html=True)
except Exception as e:
print("Some error occurred in main")
st.exception(e)
if __name__ == "__main__":
main()
|