Spaces:
Runtime error
Runtime error
File size: 4,810 Bytes
5775680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import pdb
import sys
WORD_POS = 1
TAG_POS = 2
MASK_TAG = "__entity__"
INPUT_MASK_TAG = ":__entity__"
RESET_POS_TAG='RESET'
noun_tags = ['NFP','JJ','NN','FW','NNS','NNPS','JJS','JJR','NNP','POS','CD']
cap_tags = ['NFP','JJ','NN','FW','NNS','NNPS','JJS','JJR','NNP','PRP']
def detect_masked_positions(terms_arr):
sentence_arr,span_arr = generate_masked_sentences(terms_arr)
new_sent_arr = []
for i in range(len(terms_arr)):
new_sent_arr.append(terms_arr[i][WORD_POS])
return new_sent_arr,sentence_arr,span_arr
def generate_masked_sentences(terms_arr):
size = len(terms_arr)
sentence_arr = []
span_arr = []
i = 0
hack_for_no_nouns_case(terms_arr)
while (i < size):
term_info = terms_arr[i]
if (term_info[TAG_POS] in noun_tags):
skip = gen_sentence(sentence_arr,terms_arr,i)
i += skip
for j in range(skip):
span_arr.append(1)
else:
i += 1
span_arr.append(0)
#print(sentence_arr)
return sentence_arr,span_arr
def hack_for_no_nouns_case(terms_arr):
'''
This is just a hack for case user enters a sentence with no entity to be tagged specifically and the sentence has no nouns
Happens for odd inputs like a single word like "eg" etc.
Just make the first term as a noun to proceed.
'''
size = len(terms_arr)
i = 0
found = False
while (i < size):
term_info = terms_arr[i]
if (term_info[TAG_POS] in noun_tags):
found = True
break
else:
i += 1
if (not found and len(terms_arr) >= 1):
term_info = terms_arr[0]
term_info[TAG_POS] = noun_tags[0]
def gen_sentence(sentence_arr,terms_arr,index):
size = len(terms_arr)
new_sent = []
for prefix,term in enumerate(terms_arr[:index]):
new_sent.append(term[WORD_POS])
i = index
skip = 0
while (i < size):
if (terms_arr[i][TAG_POS] in noun_tags):
skip += 1
i += 1
else:
break
new_sent.append(MASK_TAG)
i = index + skip
while (i < size):
new_sent.append(terms_arr[i][WORD_POS])
i += 1
assert(skip != 0)
sentence_arr.append(new_sent)
return skip
def capitalize(terms_arr):
for i,term_tag in enumerate(terms_arr):
#print(term_tag)
if (term_tag[TAG_POS] in cap_tags):
word = term_tag[WORD_POS][0].upper() + term_tag[WORD_POS][1:]
term_tag[WORD_POS] = word
#print(terms_arr)
def set_POS_based_on_entities(sent):
terms_arr = []
sent_arr = sent.split()
for i,word in enumerate(sent_arr):
#print(term_tag)
term_tag = ['-']*5
if (word.endswith(INPUT_MASK_TAG)):
term_tag[TAG_POS] = noun_tags[0]
term_tag[WORD_POS] = word.replace(INPUT_MASK_TAG,"")
else:
term_tag[TAG_POS] = RESET_POS_TAG
term_tag[WORD_POS] = word
terms_arr.append(term_tag)
return terms_arr
#print(terms_arr)
def filter_common_noun_spans(span_arr,masked_sent_arr,terms_arr,common_descs):
ret_span_arr = span_arr.copy()
ret_masked_sent_arr = []
sent_index = 0
loop_span_index = 0
while (loop_span_index < len(span_arr)):
span_val = span_arr[loop_span_index]
orig_index = loop_span_index
if (span_val == 1):
curr_index = orig_index
is_all_common = True
while (curr_index < len(span_arr) and span_arr[curr_index] == 1):
term = terms_arr[curr_index]
if (term[WORD_POS].lower() not in common_descs):
is_all_common = False
curr_index += 1
loop_span_index = curr_index #note the loop scan index is updated
if (is_all_common):
curr_index = orig_index
print("Filtering common span: ",end='')
while (curr_index < len(span_arr) and span_arr[curr_index] == 1):
print(terms_arr[curr_index][WORD_POS],' ',end='')
ret_span_arr[curr_index] = 0
curr_index += 1
print()
sent_index += 1 # we are skipping a span
else:
ret_masked_sent_arr.append(masked_sent_arr[sent_index])
sent_index += 1
else:
loop_span_index += 1
return ret_masked_sent_arr,ret_span_arr
def normalize_casing(sent):
sent_arr = sent.split()
ret_sent_arr = []
for i,word in enumerate(sent_arr):
if (len(word) > 1):
norm_word = word[0] + word[1:].lower()
else:
norm_word = word[0]
ret_sent_arr.append(norm_word)
return ' '.join(ret_sent_arr)
|