Spaces:
Runtime error
Runtime error
File size: 17,964 Bytes
f949b3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import io
import math
import os
import PIL.Image
import numpy as np
import imageio.v3 as iio
import warnings
import torch
import torchvision.transforms.functional as TF
from scipy.ndimage import binary_dilation, binary_erosion
import cv2
import re
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import HTML, Image, display
IMG_THUMBSIZE = None
def torch2np(x, vmin=-1, vmax=1):
if x.ndim != 4:
# raise Exception("Please only use (B,C,H,W) torch tensors!")
warnings.warn(
"Warning! Shape of the image was not provided in (B,C,H,W) format, the shape was inferred automatically!")
if x.ndim == 3:
x = x[None]
if x.ndim == 2:
x = x[None, None]
x = x.detach().cpu().float()
if x.dtype == torch.uint8:
return x.numpy().astype(np.uint8)
elif vmin is not None and vmax is not None:
x = (255 * (x.clip(vmin, vmax) - vmin) / (vmax - vmin))
x = x.permute(0, 2, 3, 1).to(torch.uint8)
return x.numpy()
else:
raise NotImplementedError()
class IImage:
'''
Generic media storage. Can store both images and videos.
Stores data as a numpy array by default.
Can be viewed in a jupyter notebook.
'''
@staticmethod
def open(path):
iio_obj = iio.imopen(path, 'r')
data = iio_obj.read()
try:
# .properties() does not work for images but for gif files
if not iio_obj.properties().is_batch:
data = data[None]
except AttributeError as e:
# this one works for gif files
if not "duration" in iio_obj.metadata():
data = data[None]
if data.ndim == 3:
data = data[..., None]
image = IImage(data)
image.link = os.path.abspath(path)
return image
@staticmethod
def normalized(x, dims=[-1, -2]):
x = (x - x.amin(dims, True)) / \
(x.amax(dims, True) - x.amin(dims, True))
return IImage(x, 0)
def numpy(self): return self.data
def torch(self, vmin=-1, vmax=1):
if self.data.ndim == 3:
data = self.data.transpose(2, 0, 1) / 255.
else:
data = self.data.transpose(0, 3, 1, 2) / 255.
return vmin + torch.from_numpy(data).float().to(self.device) * (vmax - vmin)
def cuda(self):
self.device = 'cuda'
return self
def cpu(self):
self.device = 'cpu'
return self
def pil(self):
ans = []
for x in self.data:
if x.shape[-1] == 1:
x = x[..., 0]
ans.append(PIL.Image.fromarray(x))
if len(ans) == 1:
return ans[0]
return ans
def is_iimage(self):
return True
@property
def shape(self): return self.data.shape
@property
def size(self): return (self.data.shape[-2], self.data.shape[-3])
def setFps(self, fps):
self.fps = fps
self.generate_display()
return self
def __init__(self, x, vmin=-1, vmax=1, fps=None):
if isinstance(x, PIL.Image.Image):
self.data = np.array(x)
if self.data.ndim == 2:
self.data = self.data[..., None] # (H,W,C)
self.data = self.data[None] # (B,H,W,C)
elif isinstance(x, IImage):
self.data = x.data.copy() # Simple Copy
elif isinstance(x, np.ndarray):
self.data = x.copy().astype(np.uint8)
if self.data.ndim == 2:
self.data = self.data[None, ..., None]
if self.data.ndim == 3:
warnings.warn(
"Inferred dimensions for a 3D array as (H,W,C), but could've been (B,H,W)")
self.data = self.data[None]
elif isinstance(x, torch.Tensor):
self.data = torch2np(x, vmin, vmax)
self.display_str = None
self.device = 'cpu'
self.fps = fps if fps is not None else (
1 if len(self.data) < 10 else 30)
self.link = None
def generate_display(self):
if IMG_THUMBSIZE is not None:
if self.size[1] < self.size[0]:
thumb = self.resize(
(self.size[1]*IMG_THUMBSIZE//self.size[0], IMG_THUMBSIZE))
else:
thumb = self.resize(
(IMG_THUMBSIZE, self.size[0]*IMG_THUMBSIZE//self.size[1]))
else:
thumb = self
if self.is_video():
self.anim = Animation(thumb.data, fps=self.fps)
self.anim.render()
self.display_str = self.anim.anim_str
else:
b = io.BytesIO()
data = thumb.data[0]
if data.shape[-1] == 1:
data = data[..., 0]
PIL.Image.fromarray(data).save(b, "PNG")
self.display_str = b.getvalue()
return self.display_str
def resize(self, size, *args, **kwargs):
if size is None:
return self
use_small_edge_when_int = kwargs.pop('use_small_edge_when_int', False)
# Backward compatibility
resample = kwargs.pop('filter', PIL.Image.BICUBIC)
resample = kwargs.pop('resample', resample)
if isinstance(size, int):
if use_small_edge_when_int:
h, w = self.data.shape[1:3]
aspect_ratio = h / w
size = (max(size, int(size * aspect_ratio)),
max(size, int(size / aspect_ratio)))
else:
h, w = self.data.shape[1:3]
aspect_ratio = h / w
size = (min(size, int(size * aspect_ratio)),
min(size, int(size / aspect_ratio)))
if self.size == size[::-1]:
return self
return stack([IImage(x.pil().resize(size[::-1], *args, resample=resample, **kwargs)) for x in self])
def pad(self, padding, *args, **kwargs):
return IImage(TF.pad(self.torch(0), padding=padding, *args, **kwargs), 0)
def padx(self, multiplier, *args, **kwargs):
size = np.array(self.size)
padding = np.concatenate(
[[0, 0], np.ceil(size / multiplier).astype(int) * multiplier - size])
return self.pad(list(padding), *args, **kwargs)
def pad2wh(self, w=0, h=0, **kwargs):
cw, ch = self.size
return self.pad([0, 0, max(0, w - cw), max(0, h-ch)], **kwargs)
def pad2square(self, *args, **kwargs):
if self.size[0] > self.size[1]:
dx = self.size[0] - self.size[1]
return self.pad([0, dx//2, 0, dx-dx//2], *args, **kwargs)
elif self.size[0] < self.size[1]:
dx = self.size[1] - self.size[0]
return self.pad([dx//2, 0, dx-dx//2, 0], *args, **kwargs)
return self
def crop2square(self, *args, **kwargs):
if self.size[0] > self.size[1]:
dx = self.size[0] - self.size[1]
return self.crop([dx//2, 0, self.size[1], self.size[1]], *args, **kwargs)
elif self.size[0] < self.size[1]:
dx = self.size[1] - self.size[0]
return self.crop([0, dx//2, self.size[0], self.size[0]], *args, **kwargs)
return self
def alpha(self):
return IImage(self.data[..., -1, None], fps=self.fps)
def rgb(self):
return IImage(self.pil().convert('RGB'), fps=self.fps)
def png(self):
return IImage(np.concatenate([self.data, 255 * np.ones_like(self.data)[..., :1]], -1))
def grid(self, nrows=None, ncols=None):
if nrows is not None:
ncols = math.ceil(self.data.shape[0] / nrows)
elif ncols is not None:
nrows = math.ceil(self.data.shape[0] / ncols)
else:
warnings.warn(
"No dimensions specified, creating a grid with 5 columns (default)")
ncols = 5
nrows = math.ceil(self.data.shape[0] / ncols)
pad = nrows * ncols - self.data.shape[0]
data = np.pad(self.data, ((0, pad), (0, 0), (0, 0), (0, 0)))
rows = [np.concatenate(x, 1, dtype=np.uint8)
for x in np.array_split(data, nrows)]
return IImage(np.concatenate(rows, 0, dtype=np.uint8)[None])
def hstack(self):
return IImage(np.concatenate(self.data, 1, dtype=np.uint8)[None])
def vstack(self):
return IImage(np.concatenate(self.data, 0, dtype=np.uint8)[None])
def vsplit(self, number_of_splits):
return IImage(np.concatenate(np.split(self.data, number_of_splits, 1)))
def hsplit(self, number_of_splits):
return IImage(np.concatenate(np.split(self.data, number_of_splits, 2)))
def heatmap(self, resize=None, cmap=cv2.COLORMAP_JET):
data = np.stack([cv2.cvtColor(cv2.applyColorMap(
x, cmap), cv2.COLOR_BGR2RGB) for x in self.data])
return IImage(data).resize(resize, use_small_edge_when_int=True)
def display(self):
try:
display(self)
except:
print("No display")
return self
def dilate(self, iterations=1, *args, **kwargs):
if iterations == 0:
return IImage(self.data)
return IImage((binary_dilation(self.data, iterations=iterations, *args, *kwargs)*255.).astype(np.uint8))
def erode(self, iterations=1, *args, **kwargs):
return IImage((binary_erosion(self.data, iterations=iterations, *args, *kwargs)*255.).astype(np.uint8))
def hull(self):
convex_hulls = []
for frame in self.data:
contours, hierarchy = cv2.findContours(
frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = [x.astype(np.int32) for x in contours]
mask_contours = [cv2.convexHull(np.concatenate(contours))]
canvas = np.zeros(self.data[0].shape, np.uint8)
convex_hull = cv2.drawContours(
canvas, mask_contours, -1, (255, 0, 0), -1)
convex_hulls.append(convex_hull)
return IImage(np.array(convex_hulls))
def is_video(self):
return self.data.shape[0] > 1
def __getitem__(self, idx):
return IImage(self.data[None, idx], fps=self.fps)
# if self.is_video(): return IImage(self.data[idx], fps = self.fps)
# return self
def _repr_png_(self):
if self.is_video():
return None
if self.display_str is None:
self.generate_display()
return self.display_str
def _repr_html_(self):
if not self.is_video():
return None
if self.display_str is None:
self.generate_display()
return self.display_str
def save(self, path):
_, ext = os.path.splitext(path)
if self.is_video():
# if ext in ['.jpg', '.png']:
if self.display_str is None:
self.generate_display()
if ext == ".apng":
self.anim.anim_obj.save(path, writer="pillow")
else:
self.anim.anim_obj.save(path)
else:
data = self.data if self.data.ndim == 3 else self.data[0]
if data.shape[-1] == 1:
data = data[:, :, 0]
PIL.Image.fromarray(data).save(path)
return self
def write(self, text, center=(0, 25), font_scale=0.8, color=(255, 255, 255), thickness=2):
if not isinstance(text, list):
text = [text for _ in self.data]
data = np.stack([cv2.putText(x.copy(), t, center, cv2.FONT_HERSHEY_COMPLEX,
font_scale, color, thickness) for x, t in zip(self.data, text)])
return IImage(data)
def append_text(self, text, padding, font_scale=0.8, color=(255, 255, 255), thickness=2, scale_factor=0.9, center=(0, 0), fill=0):
assert np.count_nonzero(padding) == 1
axis_padding = np.nonzero(padding)[0][0]
scale_padding = padding[axis_padding]
y_0 = 0
x_0 = 0
if axis_padding == 0:
width = scale_padding
y_max = self.shape[1]
elif axis_padding == 1:
width = self.shape[2]
y_max = scale_padding
elif axis_padding == 2:
x_0 = self.shape[2]
width = scale_padding
y_max = self.shape[1]
elif axis_padding == 3:
width = self.shape[2]
y_0 = self.shape[1]
y_max = self.shape[1]+scale_padding
width -= center[0]
x_0 += center[0]
y_0 += center[1]
self = self.pad(padding, fill=fill)
def wrap_text(text, width, _font_scale):
allowed_seperator = ' |-|_|/|\n'
words = re.split(allowed_seperator, text)
# words = text.split()
lines = []
current_line = words[0]
sep_list = []
start_idx = 0
for start_word in words[:-1]:
pos = text.find(start_word, start_idx)
pos += len(start_word)
sep_list.append(text[pos])
start_idx = pos+1
for word, separator in zip(words[1:], sep_list):
if cv2.getTextSize(current_line + separator + word, cv2.FONT_HERSHEY_COMPLEX, _font_scale, thickness)[0][0] <= width:
current_line += separator + word
else:
if cv2.getTextSize(current_line, cv2.FONT_HERSHEY_COMPLEX, _font_scale, thickness)[0][0] <= width:
lines.append(current_line)
current_line = word
else:
return []
if cv2.getTextSize(current_line, cv2.FONT_HERSHEY_COMPLEX, _font_scale, thickness)[0][0] <= width:
lines.append(current_line)
else:
return []
return lines
def wrap_text_and_scale(text, width, _font_scale, y_0, y_max):
height = y_max+1
while height > y_max:
text_lines = wrap_text(text, width, _font_scale)
if len(text) > 0 and len(text_lines) == 0:
height = y_max+1
else:
line_height = cv2.getTextSize(
text_lines[0], cv2.FONT_HERSHEY_COMPLEX, _font_scale, thickness)[0][1]
height = line_height * len(text_lines) + y_0
# scale font if out of frame
if height > y_max:
_font_scale = _font_scale * scale_factor
return text_lines, line_height, _font_scale
result = []
if not isinstance(text, list):
text = [text for _ in self.data]
else:
assert len(text) == len(self.data)
for x, t in zip(self.data, text):
x = x.copy()
text_lines, line_height, _font_scale = wrap_text_and_scale(
t, width, font_scale, y_0, y_max)
y = line_height
for line in text_lines:
x = cv2.putText(
x, line, (x_0, y_0+y), cv2.FONT_HERSHEY_COMPLEX, _font_scale, color, thickness)
y += line_height
result.append(x)
data = np.stack(result)
return IImage(data)
# ========== OPERATORS =============
def __or__(self, other):
# TODO: fix for variable sizes
return IImage(np.concatenate([self.data, other.data], 2))
def __truediv__(self, other):
# TODO: fix for variable sizes
return IImage(np.concatenate([self.data, other.data], 1))
def __and__(self, other):
return IImage(np.concatenate([self.data, other.data], 0))
def __add__(self, other):
return IImage(0.5 * self.data + 0.5 * other.data)
def __mul__(self, other):
if isinstance(other, IImage):
return IImage(self.data / 255. * other.data)
return IImage(self.data * other / 255.)
def __xor__(self, other):
return IImage(0.5 * self.data + 0.5 * other.data + 0.5 * self.data * (other.data.sum(-1, keepdims=True) == 0))
def __invert__(self):
return IImage(255 - self.data)
__rmul__ = __mul__
def bbox(self):
return [cv2.boundingRect(x) for x in self.data]
def fill_bbox(self, bbox_list, fill=255):
data = self.data.copy()
for bbox in bbox_list:
x, y, w, h = bbox
data[:, y:y+h, x:x+w, :] = fill
return IImage(data)
def crop(self, bbox):
assert len(bbox) in [2, 4]
if len(bbox) == 2:
x, y = 0, 0
w, h = bbox
elif len(bbox) == 4:
x, y, w, h = bbox
return IImage(self.data[:, y:y+h, x:x+w, :])
def stack(images, axis = 0):
return IImage(np.concatenate([x.data for x in images], axis))
class Animation:
JS = 0
HTML = 1
ANIMATION_MODE = HTML
def __init__(self, frames, fps = 30):
"""_summary_
Args:
frames (np.ndarray): _description_
"""
self.frames = frames
self.fps = fps
self.anim_obj = None
self.anim_str = None
def render(self):
size = (self.frames.shape[2],self.frames.shape[1])
self.fig = plt.figure(figsize = size, dpi = 1)
plt.axis('off')
img = plt.imshow(self.frames[0], cmap = 'gray')
self.fig.subplots_adjust(0,0,1,1)
self.anim_obj = animation.FuncAnimation(
self.fig,
lambda i: img.set_data(self.frames[i,:,:,:]),
frames=self.frames.shape[0],
interval = 1000 / self.fps
)
plt.close()
if Animation.ANIMATION_MODE == Animation.HTML:
self.anim_str = self.anim_obj.to_html5_video()
elif Animation.ANIMATION_MODE == Animation.JS:
self.anim_str = self.anim_obj.to_jshtml()
return self.anim_obj
def _repr_html_(self):
if self.anim_obj is None: self.render()
return self.anim_str |