File size: 21,488 Bytes
c77435d
 
8a142a6
c77435d
2d7d23d
06ddd30
8a142a6
 
 
ce4dda5
 
c4fe1db
8a142a6
2d7d23d
8a142a6
 
 
d958e2a
 
 
 
8a142a6
 
06ddd30
 
 
 
 
 
 
 
 
 
 
 
 
2d7d23d
8a142a6
2d7d23d
347797e
8a142a6
 
 
c77435d
8a142a6
 
c77435d
8a142a6
2d7d23d
 
 
 
 
 
 
 
ce4dda5
 
 
 
 
2d7d23d
ce4dda5
 
665e5a3
 
 
 
 
 
 
 
 
 
 
 
ce4dda5
 
347797e
 
 
 
 
ce4dda5
 
 
 
 
347797e
ce4dda5
 
665e5a3
 
 
2d7d23d
ce4dda5
347797e
 
2d7d23d
347797e
 
 
 
 
 
 
 
 
 
 
2d7d23d
 
a8243a3
2d7d23d
 
 
 
 
347797e
 
 
2d7d23d
 
 
 
 
 
 
 
347797e
 
 
 
2d7d23d
 
 
 
 
 
8a142a6
665e5a3
ce4dda5
 
665e5a3
8a142a6
 
2d7d23d
8a142a6
c77435d
8a142a6
 
 
 
c77435d
8a142a6
 
 
 
 
 
 
 
 
 
2d7d23d
 
 
 
 
 
 
 
8a142a6
 
ce4dda5
 
8a142a6
 
 
 
ce4dda5
 
 
 
 
8a142a6
e101547
 
 
 
 
347797e
 
 
 
e101547
 
 
 
06ddd30
 
e101547
 
 
347797e
 
 
 
 
e101547
 
347797e
e101547
 
 
 
 
a8243a3
 
 
 
 
347797e
 
a8243a3
8a142a6
 
 
 
 
2d7d23d
 
a8243a3
347797e
2d7d23d
 
e101547
347797e
2d7d23d
a8243a3
 
 
 
 
 
 
 
 
 
 
 
8a142a6
 
 
 
 
 
 
 
 
 
ce4dda5
8a142a6
 
 
 
 
 
d958e2a
 
 
 
 
 
 
8a142a6
 
 
 
 
d958e2a
8a142a6
 
 
e101547
d958e2a
8a142a6
2d7d23d
8a142a6
2d7d23d
d958e2a
 
8a142a6
d958e2a
8a142a6
 
 
 
 
d958e2a
8a142a6
e101547
 
8a142a6
 
e101547
 
 
 
 
 
 
 
8a142a6
 
e101547
 
 
 
 
 
 
 
8a142a6
d958e2a
 
8a142a6
d958e2a
8a142a6
347797e
 
 
 
8a142a6
2d7d23d
8a142a6
 
d958e2a
8a142a6
 
 
 
 
 
 
 
 
d958e2a
8a142a6
 
d958e2a
8a142a6
 
c4fe1db
2d7d23d
8a142a6
 
 
 
 
 
d958e2a
ce4dda5
 
 
 
 
 
 
 
 
 
 
 
 
8a142a6
a8243a3
2d7d23d
8a142a6
 
 
 
c77435d
 
2d7d23d
06ddd30
8a142a6
06ddd30
8a142a6
2d7d23d
 
 
ce4dda5
2d7d23d
 
 
 
 
 
8a142a6
 
ce4dda5
 
 
 
 
 
 
15dd199
2d7d23d
15dd199
 
347797e
c4fe1db
 
 
 
15dd199
347797e
2d7d23d
 
 
15dd199
2d7d23d
 
 
 
 
15dd199
ce4dda5
15dd199
2d7d23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a142a6
 
 
 
 
 
2d7d23d
8a142a6
ce4dda5
 
2d7d23d
 
 
 
 
c77435d
ce4dda5
 
 
 
 
 
 
 
a8243a3
 
 
c77435d
8a142a6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import gradio as gr
import random
import pandas as pd
import os
import threading
import time
from utils.data_loader import get_random_example
from utils.models import generate_summaries, model_names
from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html
from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html
from utils.vote_logger import save_vote_details
from utils.shared import generation_interrupt  # Import from shared module

# Feedback options for different voting outcomes
feedback_options = {
    "left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"],
    "right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
    "tie": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)", 
           "Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"],
    "neither": ["Model A: Incomplete", "Model A: Hallucinate", "Model A: Irrelevant", "Model A: Incorrect refusal (if applicable)",
               "Model B: Incomplete", "Model B: Hallucinate", "Model B: Irrelevant", "Model B: Incorrect refusal (if applicable)"]
}

def load_context(set_interrupt=False):
    """
    Load a new question and context
    
    Parameters:
    - set_interrupt: If True, will interrupt any ongoing inference before loading
    """
    if set_interrupt:
        # Interrupt any ongoing inference
        generation_interrupt.set()
        time.sleep(0.2)  # Short delay to allow threads to detect interrupt
        
    # Always clear the flag before starting new work
    generation_interrupt.clear()
    example = get_random_example()
    
    # Format the context description
    context_desc = example.get('processed_context_desc', '')
    if context_desc:
        context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
    
    show_full = False
    context_html = get_context_html(example, show_full=show_full)
    
    return [
        example,
        gr.update(value=example['question']),
        gr.update(value=context_desc, visible=bool(context_desc)),
        gr.update(value=context_html),
        gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
        show_full
    ]

def load_leaderboard():
    """Loads and displays the leaderboard data"""
    results = load_leaderboard_data()
    leaderboard_html = generate_leaderboard_html(results)
    return leaderboard_html

def generate_model_summaries(example):
    """Run model inference"""
    
    result = {
        "model_a": "",
        "model_b": "",
        "summary_a": "",
        "summary_b": "",
        "completed": False
    }
    
    if generation_interrupt.is_set():
        return result

    try:
        m_a_name, m_b_name = random.sample(model_names, 2)
        
        # Track the partial completion state
        result["model_a"] = m_a_name
        result["model_b"] = m_b_name
        
        s_a, s_b = generate_summaries(example, m_a_name, m_b_name)
        
        if not generation_interrupt.is_set():
            result["summary_a"] = s_a
            result["summary_b"] = s_b
            result["completed"] = bool(s_a and s_b)  # Only mark complete if both have content
    except Exception as e:
        print(f"Error in generation: {e}")
        
    return result

def process_generation_result(result):
    """Process the results from the generation function"""
    if not result["completed"] or not result["summary_a"] or not result["summary_b"]:
        # Either generation was interrupted or both summaries aren't ready
        return [
            result.get("model_a", ""), 
            result.get("model_b", ""), 
            result.get("summary_a", ""), 
            result.get("summary_b", ""),
            None, [], False, load_leaderboard_data(),
            gr.update(value=result.get("summary_a", "Generation was interrupted or failed.")),
            gr.update(value=result.get("summary_b", "Generation was interrupted or failed.")),
            gr.update(interactive=False, elem_classes=["vote-button"]),  # Explicitly disable
            gr.update(interactive=False, elem_classes=["vote-button"]),
            gr.update(interactive=False, elem_classes=["vote-button"]),
            gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]),
            gr.update(choices=[], value=[], interactive=False, visible=False),
            gr.update(visible=False),
            gr.update(interactive=False, visible=True),
            gr.update(visible=False),
            gr.update(interactive=True),
            gr.update(elem_classes=[])
        ]
    
    # Only enable voting when both summaries are complete and non-empty
    buttons_interactive = bool(result["summary_a"] and result["summary_b"])
    
    # Generation completed successfully
    agg_results = load_leaderboard_data()
    return [
        result["model_a"], result["model_b"], 
        result["summary_a"], result["summary_b"],
        None, [], False, agg_results,
        gr.update(value=result["summary_a"]),
        gr.update(value=result["summary_b"]),
        gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
        gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
        gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]),
        gr.update(interactive=buttons_interactive, elem_classes=["vote-button", "vote-button-neither"]),
        gr.update(choices=[], value=[], interactive=False, visible=False),
        gr.update(visible=False),
        gr.update(interactive=False, visible=True),
        gr.update(visible=False),
        gr.update(interactive=True),
        gr.update(elem_classes=[])
    ]

def process_example(example):
    result = generate_model_summaries(example)
    return process_generation_result(result)

def select_vote_improved(winner_choice):
    """Updates UI based on vote selection"""
    feedback_choices = feedback_options.get(winner_choice, [])

    btn_a_classes = ["vote-button"]
    btn_b_classes = ["vote-button"]
    btn_tie_classes = ["vote-button"]
    btn_neither_classes = ["vote-button", "vote-button-neither"]
    
    if winner_choice == 'left':
        btn_a_classes.append("selected")
    elif winner_choice == 'right':
        btn_b_classes.append("selected")
    elif winner_choice == 'tie':
        btn_tie_classes.append("selected")
    elif winner_choice == 'neither':
        btn_neither_classes.append("selected")

    return [
        winner_choice,
        gr.update(choices=feedback_choices, value=[], interactive=True, visible=True),
        gr.update(visible=True),
        gr.update(interactive=True),
        gr.update(elem_classes=btn_a_classes),
        gr.update(elem_classes=btn_b_classes),
        gr.update(elem_classes=btn_tie_classes),
        gr.update(elem_classes=btn_neither_classes)
    ]

def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results):
    """Handle vote submission - logs details and updates leaderboard"""
    if winner is None:
        print("Warning: Submit called without a winner selected.")
        return {}

    # Save detailed vote information
    save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b)
    
    # Update Elo ratings and get UI updates
    return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results)

def show_loading_state():
    """Show loading state while fetching new content"""
    return [
        gr.update(value="Loading new question and summaries...", interactive=False),
        gr.update(value="Loading new question and summaries...", interactive=False),
        gr.update(interactive=False),  # For vote_button_a
        gr.update(interactive=False),  # For vote_button_b
        gr.update(interactive=False),  # For vote_button_tie
        gr.update(interactive=False)   # For vote_button_neither
    ]

def handle_new_example_click():
    """Handle clicking 'Get new example' button"""
    # Use the centralized approach - set_interrupt=True tells load_context to handle interruption
    return load_context(set_interrupt=True)[0]

def update_ui_for_new_context(example):
    """Update UI with new context information"""
    # Format the context description
    context_desc = example.get('processed_context_desc', '')
    if context_desc:
        context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>"
    
    return [
        gr.update(value=example['question']),
        gr.update(value=context_desc, visible=bool(context_desc)),
        gr.update(value=get_context_html(example, False)),
        gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]),
        False
    ]

# Resource cleanup function for unload event
def cleanup_on_disconnect():
    """Clean up resources when browser disconnects"""
    print(f"Browser disconnected. Cleaning up resources...")
    generation_interrupt.set()
    # No need for time.sleep here as this is just setting the flag
    # Threads will detect it on their next check

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Default(
    primary_hue=gr.themes.colors.orange,
    secondary_hue=gr.themes.colors.slate
)) as demo:
    # Load CSS
    css_path = os.path.join(os.getcwd(), 'static', 'styles.css')
    
    # Load the CSS file
    with open(css_path, 'r') as f:
        css_content = f.read()
    
    # Create HTML components with CSS
    gr.HTML(f"<style>{css_content}</style>")
    
    # Add JavaScript to handle browser unload events
    unload_js = """
    <script>
    // This runs when the page is about to be closed or refreshed
    window.addEventListener('beforeunload', function(e) {
        // Send a synchronous request to the server
        navigator.sendBeacon('/cleanup?session_id=' + window.gradioClientState.session_hash);
    });
    </script>
    """
    gr.HTML(unload_js)

    # State Variables
    current_example = gr.State({})
    model_a_name = gr.State("")
    model_b_name = gr.State("")
    summary_a_text = gr.State("")
    summary_b_text = gr.State("")
    selected_winner = gr.State(None)
    feedback_list = gr.State([])
    show_results_state = gr.State(False)
    results_agg = gr.State(load_leaderboard_data())
    show_full_context = gr.State(False)

    # Create Tabs
    with gr.Tabs() as tabs:
        # Main Arena Tab
        with gr.TabItem("Arena", id="arena-tab"):
            gr.Markdown("# RAG SLM Summarizer/Generator Arena")
            gr.Markdown("""
1️⃣ Review the query and examine the highlighted context (✨ highlights contain key information! )\n
2️⃣ Compare answers generated by two different models side-by-side\n
3️⃣ Vote for the better response or select 'Tie/Neither' if appropriate""")

            gr.HTML("<hr>")

            # Main container
            with gr.Column(elem_id="main-interface-area") as main_interface_area:
                # Query section
                with gr.Row(elem_id="query-title-row"):
                    gr.Markdown("### πŸ’¬ Query (What Users Want to Ask About the Doc)", elem_classes="section-heading")

                with gr.Row(elem_id="query-container"):
                    with gr.Row(elem_classes="query-box-row"):
                        query_display = gr.Markdown(value="Loading question...", elem_classes="query-text", elem_id="query-section")
                    random_question_btn = gr.Button("πŸ”„ Try a New Question", elem_classes="query-button")
                
                # Context description and display
                context_description = gr.Markdown("", elem_classes="context-description")
                
                gr.HTML("<hr>")

                with gr.Row(elem_id="context-header-row"):
                    gr.Markdown("### πŸ“‹ Context (Relevant Information We Got from the Database)", elem_classes="context-title")
                    context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"])
                    
                context_display = gr.HTML(value="Loading context...", label="Context Chunks")

                gr.Markdown("---")
                gr.Markdown("### πŸ” Compare Answers from Models", elem_classes="section-heading")

                # Model summaries - Add ID for JavaScript to target and disable autoscroll
                with gr.Row(elem_id="summary-containers"):
                    with gr.Column(scale=1):
                        with gr.Group(elem_classes=["summary-card", "summary-card-a"]):
                            summary_a_display = gr.Textbox(
                                label="Model A", 
                                lines=10, 
                                interactive=False, 
                                show_copy_button=True, 
                                autoscroll=False,  # Disable auto-scrolling
                                elem_id="summary-a-display"
                            )
                    with gr.Column(scale=1):
                        with gr.Group(elem_classes=["summary-card", "summary-card-b"]):
                            summary_b_display = gr.Textbox(
                                label="Model B", 
                                lines=10, 
                                interactive=False, 
                                show_copy_button=True,
                                autoscroll=False,  # Disable auto-scrolling
                                elem_id="summary-b-display"
                            )

                gr.HTML("<hr>")

                # Voting section
                gr.Markdown("### πŸ… Cast Your Vote", elem_classes="section-heading")
                with gr.Row():
                    vote_button_a = gr.Button("⬅️ Summary A is Better", elem_classes=["vote-button"], interactive=False)
                    vote_button_tie = gr.Button("🀝 Tie / Equally Good", elem_classes=["vote-button"], interactive=False)
                    vote_button_b = gr.Button("➑️ Summary B is Better", elem_classes=["vote-button"], interactive=False)
                    vote_button_neither = gr.Button("❌ Neither is Good", elem_classes=["vote-button", "vote-button-neither"], interactive=False)

                # Feedback and Submit sections
                with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section:
                    feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False)
                submit_button = gr.Button("Submit Your Vote", variant="primary", interactive=False, elem_id="submit-button")

                # Results area
                with gr.Column(visible=False) as results_reveal_area:
                    gr.Markdown("---")
                    gr.Markdown("### βœ… Vote Submitted!", elem_classes="section-heading")
                     
                    # Model reveal section
                    with gr.Row():
                        with gr.Column(scale=1):
                            gr.Markdown("### Model A was:", elem_classes="section-heading")
                            model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal")
                        with gr.Column(scale=1):
                            gr.Markdown("### Model B was:", elem_classes="section-heading")
                            model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal")
                     
                    gr.HTML("<hr>")
                    
                    # Try another button
                    with gr.Row(elem_classes=["control-buttons"]):
                        try_another_btn = gr.Button("πŸ”„ Try Another Question", elem_id="try-another-btn")

        # Leaderboard Tab
        with gr.TabItem("Leaderboard", id="leaderboard-tab"):
            gr.Markdown("# RAG SLM Summarizer/Generator Leaderboard", elem_classes="orange-title")
            gr.Markdown("View performance statistics for all models ranked by Elo rating.")
            
            with gr.Group(elem_id="leaderboard-info"):
                gr.Markdown("""### About Elo Ratings
                
The Elo rating system provides a more accurate ranking than simple win rates:
- All models start at 1500 points
- Points are exchanged after each comparison based on the expected outcome
- Beating a stronger model earns more points than beating a weaker one
- The Β± value shows the statistical confidence interval (95%)
""")
            
            results_table_display = gr.HTML(label="Model Performance")

    # Event handling
    # Toggle context display
    context_toggle_btn.click(
        fn=toggle_context_display,
        inputs=[current_example, show_full_context],
        outputs=[show_full_context, context_display, context_toggle_btn]
    )
    
    # Initial loading - context first, then summaries
    # Uses load_context without interruption since it's the first load
    demo.load(
        fn=load_context,  # Default is set_interrupt=False
        inputs=[],
        outputs=[current_example, query_display, context_description, context_display, 
                context_toggle_btn, show_full_context]
    ).then(
        fn=process_example,
        inputs=[current_example],
        outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
                selected_winner, feedback_list, show_results_state, results_agg,
                summary_a_display, summary_b_display, vote_button_a, vote_button_b, 
                vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, 
                submit_button, results_reveal_area, random_question_btn, main_interface_area]
    )

    # Load leaderboard content on app start
    demo.load(
        fn=load_leaderboard,
        inputs=[],
        outputs=[results_table_display]
    )

    # Use a single event chain for each button, structured to update UI first, then run inference
    for btn in [random_question_btn, try_another_btn]:
        btn.click(
            # Step 1: Show loading state immediately
            fn=show_loading_state,
            inputs=[],
            outputs=[summary_a_display, summary_b_display, vote_button_a, 
                    vote_button_b, vote_button_tie, vote_button_neither]
        ).then(
            # Step 2: Get new example
            fn=handle_new_example_click,
            inputs=[],
            outputs=[current_example]
        ).then(
            # Step 3: Update context UI immediately
            fn=update_ui_for_new_context,
            inputs=[current_example],
            outputs=[query_display, context_description, context_display, 
                    context_toggle_btn, show_full_context]
        ).then(
            # Step 4: Then process example for model outputs
            fn=process_example,
            inputs=[current_example],
            outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text,
                    selected_winner, feedback_list, show_results_state, results_agg,
                    summary_a_display, summary_b_display, vote_button_a, vote_button_b, 
                    vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, 
                    submit_button, results_reveal_area, random_question_btn, main_interface_area]
        )

    # Vote button handlers
    for btn, choice in zip(
        [vote_button_a, vote_button_b, vote_button_tie, vote_button_neither],
        ['left', 'right', 'tie', 'neither']
    ):
        btn.click(
            fn=lambda choice=choice: select_vote_improved(choice),
            inputs=None,
            outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button, 
                    vote_button_a, vote_button_b, vote_button_tie, vote_button_neither]
        )

    # Update feedback when checkboxes change
    feedback_checkboxes.change(
        fn=update_feedback,
        inputs=[feedback_checkboxes],
        outputs=[feedback_list]
    )

    # Process vote submission and reveal results
    submit_button.click(
        fn=handle_vote_submission,
        inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg],
        outputs=[show_results_state, results_agg, vote_button_a, vote_button_b, 
                vote_button_tie, vote_button_neither, feedback_checkboxes,
                feedback_section, submit_button, results_reveal_area,
                random_question_btn, results_table_display, main_interface_area,
                context_toggle_btn, model_a_reveal, model_b_reveal]
    )
    
    # Refresh leaderboard when switching to the leaderboard tab
    tabs.select(
        fn=load_leaderboard,
        inputs=[],
        outputs=[results_table_display],
        api_name="refresh_leaderboard"
    )
    
    # Register unload event for browser disconnections
    demo.unload(cleanup_on_disconnect)

if __name__ == "__main__":
    demo.launch(debug=True)