File size: 19,263 Bytes
29e6541
0dbafab
 
 
66afa9e
29e6541
0dbafab
 
 
 
 
 
 
 
66afa9e
 
 
 
 
 
 
 
 
 
 
 
 
0dbafab
 
29e6541
66afa9e
 
 
 
29e6541
66afa9e
 
 
 
29e6541
66afa9e
 
29e6541
66afa9e
 
0dbafab
66afa9e
 
 
 
 
 
 
 
 
0dbafab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66afa9e
 
 
 
 
 
 
 
0dbafab
66afa9e
0dbafab
 
 
 
 
66afa9e
 
 
 
 
 
 
 
 
0dbafab
 
 
 
66afa9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbafab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29e6541
 
92535df
0dbafab
 
 
66afa9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbafab
66afa9e
0dbafab
66afa9e
 
 
 
0dbafab
66afa9e
 
29e6541
66afa9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbafab
 
 
 
 
 
 
 
 
 
 
 
 
29e6541
 
0dbafab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92535df
 
 
 
 
 
 
 
0dbafab
29e6541
0dbafab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import time
import os
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
import nltk
from nltk.tokenize import word_tokenize
import re

# Download necessary NLTK data
try:
    # Make the download more reliable by specifying download directory
    nltk_data_dir = '/home/user/nltk_data'
    os.makedirs(nltk_data_dir, exist_ok=True)
    
    # Download all required resources
    nltk.download('punkt', download_dir=nltk_data_dir)
    nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir)
    
    # Set the data path to include our custom directory
    nltk.data.path.insert(0, nltk_data_dir)
except Exception as e:
    print(f"NLTK download issue: {e}")
    # Fallback simple approach if the directory approach fails
    nltk.download('punkt')
    nltk.download('averaged_perceptron_tagger')

# Add error handling around model loading
try:
    # Load Whisper for ASR
    asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")

    # Load Grammar Scoring Model (CoLA)
    cola_model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-CoLA")
    cola_tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-CoLA")
    grammar_pipeline = pipeline("text-classification", model=cola_model, tokenizer=cola_tokenizer)

    # Load Grammar Correction Model (T5)
    correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")

    # Add sentiment analysis
    sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")

    # Add fluency analysis (using BERT)
    fluency_pipeline = pipeline("text-classification", model="textattack/bert-base-uncased-CoLA")
    
    # Set variables to track loaded models
    MODELS_LOADED = True
except Exception as e:
    print(f"Error loading models: {e}")
    # Set variable to track failed model loading
    MODELS_LOADED = False

# Common English filler words to detect
FILLER_WORDS = ["um", "uh", "like", "you know", "actually", "basically", "literally", 
                "sort of", "kind of", "i mean", "so", "well", "right", "okay", "yeah"]

def count_filler_words(text):
    """Count filler words in the text"""
    text = text.lower()
    count = 0
    for word in FILLER_WORDS:
        count += len(re.findall(r'\b' + word + r'\b', text))
    return count, count / max(len(text.split()), 1)  # Count and ratio

def calculate_speaking_rate(text, duration):
    """Calculate words per minute"""
    if duration <= 0:
        return 0
    words = len(text.split())
    return (words / duration) * 60  # Words per minute

def analyze_vocabulary_richness(text):
    """Analyze vocabulary richness"""
    # Split text by simple regex instead of using word_tokenize to avoid NLTK issues
    try:
        # Try using word_tokenize first
        words = word_tokenize(text.lower())
    except LookupError:
        # Fallback to simple regex-based tokenization if NLTK fails
        words = re.findall(r'\b\w+\b', text.lower())
    
    if not words:
        return 0, {}
    
    # Vocabulary richness (unique words / total words)
    unique_words = set(words)
    richness = len(unique_words) / len(words)
    
    # Use simple POS tagging or skip it if NLTK fails
    try:
        pos_tags = nltk.pos_tag(words)
        pos_counts = {}
        for _, tag in pos_tags:
            pos_counts[tag] = pos_counts.get(tag, 0) + 1
    except Exception:
        # Return simplified count if POS tagging fails
        pos_counts = {"WORD": len(words), "UNIQUE": len(unique_words)}
    
    return richness, pos_counts

def analyze_sentence_complexity(text):
    """Analyze sentence complexity with error handling"""
    try:
        # Simple sentence splitting by punctuation
        sentences = re.split(r'[.!?]+', text)
        sentences = [s.strip() for s in sentences if s.strip()]
        
        if not sentences:
            return 0, 0
        
        # Average words per sentence
        words_per_sentence = [len(s.split()) for s in sentences]
        avg_words = sum(words_per_sentence) / len(sentences)
        
        # Sentence length variation (standard deviation)
        sentence_length_variation = np.std(words_per_sentence) if len(sentences) > 1 else 0
        
        return avg_words, sentence_length_variation
    except Exception:
        # In case of any error, return simple defaults
        word_count = len(text.split())
        # Assume approximately 15 words per sentence if we can't detect
        return word_count / max(1, text.count('.') + text.count('!') + text.count('?')), 0

def create_detailed_feedback(transcription, grammar_score, corrected_text, 
                            sentiment, fluency, filler_ratio, speaking_rate, 
                            vocabulary_richness, avg_words_per_sentence):
    """Create detailed feedback based on all metrics"""
    feedback = []
    
    # Grammar feedback
    if "acceptable" in grammar_score.lower():
        feedback.append("βœ… Your grammar is good!")
    else:
        feedback.append("❗ Your grammar needs improvement. Check the corrections provided.")
    
    # Fluency feedback
    if fluency > 0.7:
        feedback.append("βœ… Your speech flows naturally.")
    else:
        feedback.append("❗ Work on making your speech more fluid and natural.")
    
    # Filler words feedback
    if filler_ratio > 0.1:
        feedback.append(f"❗ You used too many filler words ({filler_ratio:.1%} of your words).")
    else:
        feedback.append("βœ… Good job minimizing filler words!")
    
    # Speaking rate feedback
    if 120 <= speaking_rate <= 160:
        feedback.append(f"βœ… Your speaking pace is good ({speaking_rate:.0f} words/min).")
    elif speaking_rate < 120:
        feedback.append(f"❗ Try speaking a bit faster ({speaking_rate:.0f} words/min is slower than ideal).")
    else:
        feedback.append(f"❗ Try speaking a bit slower ({speaking_rate:.0f} words/min is faster than ideal).")
    
    # Vocabulary feedback
    if vocabulary_richness > 0.6:
        feedback.append("βœ… Excellent vocabulary diversity!")
    elif vocabulary_richness > 0.4:
        feedback.append("βœ… Good vocabulary usage.")
    else:
        feedback.append("❗ Try using more varied vocabulary.")
    
    # Sentence complexity feedback
    if 10 <= avg_words_per_sentence <= 20:
        feedback.append("βœ… Good sentence structure and length.")
    elif avg_words_per_sentence < 10:
        feedback.append("❗ Try using more complex sentences occasionally.")
    else:
        feedback.append("❗ Your sentences are quite long. Consider varying your sentence length.")
    
    # Overall sentiment feedback
    if sentiment == "POSITIVE":
        feedback.append("βœ… Your tone is positive and engaging.")
    else:
        feedback.append("ℹ️ Your tone is neutral/negative. Consider if this matches your intent.")
    
    return "\n".join(feedback)

def process_audio(audio):
    if audio is None:
        return "No audio provided.", "", "", "", None, ""
    
    start_time = time.time()
    
    # Check if models loaded properly
    if 'MODELS_LOADED' in globals() and not MODELS_LOADED:
        return ("Models failed to load. Please check the logs for details.", 
                "Error", "Error", "Unable to process audio due to model loading issues.", 
                None, "## Error\nThe required models couldn't be loaded. Please check the system configuration.")
    
    try:
        # Get audio duration (assuming audio[1] contains the sample rate)
        sample_rate = 16000  # Default if we can't determine
        if isinstance(audio, tuple) and len(audio) > 1:
            sample_rate = audio[1]
        
        # For file uploads, we need to handle differently
        duration = 0
        if isinstance(audio, str):
            # This is a file path
            try:
                import librosa
                y, sr = librosa.load(audio, sr=None)
                duration = librosa.get_duration(y=y, sr=sr)
            except Exception as e:
                print(f"Error getting duration: {e}")
                # Estimate duration based on file size
                try:
                    file_size = os.path.getsize(audio)
                    # Rough estimate: 16kHz, 16-bit audio is about 32KB per second
                    duration = file_size / 32000
                except:
                    duration = 10  # Default to 10 seconds if we can't determine
        else:
            # Assuming a tuple with (samples, sample_rate)
            try:
                duration = len(audio[0]) / sample_rate if sample_rate > 0 else 0
            except:
                duration = 10  # Default duration
        
        # Step 1: Transcription
        try:
            transcription_result = asr_pipeline(audio)
            transcription = transcription_result["text"]
        except Exception as e:
            print(f"Transcription error: {e}")
            return ("Error in speech recognition. Please try again.", 
                    "Error", "Error", "There was an error processing your audio.", 
                    None, f"## Error\nError in speech recognition: {str(e)[:100]}...")
        
        if not transcription or transcription.strip() == "":
            return ("No speech detected. Please speak louder or check your microphone.", 
                    "N/A", "N/A", "No speech detected in the audio.", 
                    None, "## No Speech Detected\nPlease try recording again with clearer speech.")
        
        # Step 2: Grammar Scoring
        try:
            score_output = grammar_pipeline(transcription)[0]
            label = score_output["label"]
            confidence = score_output["score"]
            grammar_score = f"{label} ({confidence:.2f})"
        except Exception as e:
            print(f"Grammar scoring error: {e}")
            label = "UNKNOWN"
            confidence = 0.5
            grammar_score = "Could not analyze grammar"
        
        # Step 3: Grammar Correction
        try:
            corrected = correction_pipeline(transcription, max_length=128)[0]["generated_text"]
        except Exception as e:
            print(f"Grammar correction error: {e}")
            corrected = transcription
        
        # Step 4: Sentiment Analysis
        try:
            sentiment_result = sentiment_pipeline(transcription)[0]
            sentiment = sentiment_result["label"]
            sentiment_score = sentiment_result["score"]
        except Exception as e:
            print(f"Sentiment analysis error: {e}")
            sentiment = "NEUTRAL"
            sentiment_score = 0.5
        
        # Step 5: Fluency Analysis
        try:
            fluency_result = fluency_pipeline(transcription)[0]
            fluency_score = fluency_result["score"] if fluency_result["label"] == "acceptable" else 1 - fluency_result["score"]
        except Exception as e:
            print(f"Fluency analysis error: {e}")
            fluency_score = 0.5
        
        # Step 6: Filler Words Analysis
        try:
            filler_count, filler_ratio = count_filler_words(transcription)
        except Exception as e:
            print(f"Filler word analysis error: {e}")
            filler_count, filler_ratio = 0, 0
        
        # Step 7: Speaking Rate
        try:
            speaking_rate = calculate_speaking_rate(transcription, duration)
        except Exception as e:
            print(f"Speaking rate calculation error: {e}")
            speaking_rate = 0
        
        # Step 8: Vocabulary Richness
        try:
            vocab_richness, pos_counts = analyze_vocabulary_richness(transcription)
        except Exception as e:
            print(f"Vocabulary analysis error: {e}")
            vocab_richness, pos_counts = 0.5, {"N/A": 1}
        
        # Step 9: Sentence Complexity
        try:
            avg_words, sentence_variation = analyze_sentence_complexity(transcription)
        except Exception as e:
            print(f"Sentence complexity analysis error: {e}")
            avg_words, sentence_variation = 0, 0
        
        # Create feedback
        try:
            feedback = create_detailed_feedback(
                transcription, grammar_score, corrected, sentiment,
                fluency_score, filler_ratio, speaking_rate, vocab_richness, avg_words
            )
        except Exception as e:
            print(f"Feedback creation error: {e}")
            feedback = "Error generating detailed feedback."
        
        # Create metrics visualization
        try:
            fig, ax = plt.subplots(figsize=(10, 6))
            
            # Define metrics for radar chart
            categories = ['Grammar', 'Fluency', 'Vocabulary', 'Speaking Rate', 'Clarity']
            
            # Normalize scores between 0 and 1
            grammar_norm = confidence if label == "acceptable" else 1 - confidence
            speaking_rate_norm = max(0, min(1, 1 - abs((speaking_rate - 140) / 100)))  # Optimal around 140 wpm
            
            values = [
                grammar_norm,
                fluency_score,
                vocab_richness,
                speaking_rate_norm,
                1 - filler_ratio  # Lower filler ratio is better
            ]
            
            # Complete the loop for the radar chart
            values += values[:1]
            categories += categories[:1]
            
            # Convert to radians and plot
            angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
            angles += angles[:1]
            
            ax.plot(angles, values, linewidth=2, linestyle='solid')
            ax.fill(angles, values, alpha=0.25)
            ax.set_yticklabels([])
            ax.set_xticks(angles[:-1])
            ax.set_xticklabels(categories[:-1])
            ax.grid(True)
            plt.title('Speaking Performance Metrics', size=15, color='navy', y=1.1)
        except Exception as e:
            print(f"Visualization error: {e}")
            # Create a simple error figure
            fig, ax = plt.subplots(figsize=(6, 3))
            ax.text(0.5, 0.5, "Error creating visualization", 
                    horizontalalignment='center', verticalalignment='center')
            ax.axis('off')
        
        # Create detailed analysis text
        processing_time = time.time() - start_time
        try:
            pos_counts_str = ', '.join([f"{k}: {v}" for k, v in sorted(pos_counts.items(), key=lambda x: x[1], reverse=True)[:5]])
        except:
            pos_counts_str = "N/A"
            
        detailed_analysis = f"""
        ## Detailed Speech Analysis

        **Processing Time:** {processing_time:.2f} seconds
        **Audio Duration:** {duration:.2f} seconds

        ### Metrics:
        - **Grammar Score:** {confidence:.2f} ({label})
        - **Fluency Score:** {fluency_score:.2f}
        - **Speaking Rate:** {speaking_rate:.1f} words per minute
        - **Vocabulary Richness:** {vocab_richness:.2f} (higher is better)
        - **Filler Words:** {filler_count} occurrences ({filler_ratio:.1%} of speech)
        - **Avg Words Per Sentence:** {avg_words:.1f}
        - **Sentiment:** {sentiment} ({sentiment_score:.2f})

        ### Word Types Used:
        {pos_counts_str}
        """
        
        return transcription, grammar_score, corrected, feedback, fig, detailed_analysis
        
    except Exception as e:
        print(f"Unexpected error in process_audio: {e}")
        return ("An unexpected error occurred during processing.", 
                "Error", "Error", "There was an unexpected error processing your audio.", 
                None, f"## Unexpected Error\n\nAn error occurred: {str(e)[:200]}...")


# Create theme
theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="indigo",
).set(
    button_primary_background_fill="*primary_500",
    button_primary_background_fill_hover="*primary_600",
    button_primary_text_color="white",
    block_title_text_weight="600",
    block_border_width="2px",
    block_shadow="0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1)",
)

with gr.Blocks(theme=theme, css="""
    .container { max-width: 1000px; margin: auto; }
    .header { text-align: center; margin-bottom: 20px; }
    .header h1 { color: #1e40af; font-size: 2.5rem; }
    .header p { color: #6b7280; font-size: 1.1rem; }
    .footer { text-align: center; margin-top: 30px; color: #6b7280; }
    .tips-box { background-color: #f0f9ff; border-radius: 10px; padding: 15px; margin: 10px 0; }
    .score-card { border: 2px solid #dbeafe; border-radius: 10px; padding: 10px; }
""") as demo:
    gr.HTML("""
    <div class="header">
        <h1>πŸŽ™οΈ Advanced ENGLISH Speaking Assessment</h1>
        <p>Record or upload your speech to receive comprehensive feedback on your English speaking skills</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(
                sources=["microphone", "upload"], 
                type="filepath", 
                label="🎀 Speak or Upload Audio"
            )
            
            with gr.Accordion("Speaking Tips", open=False):
                gr.HTML("""
                <div class="tips-box">
                    <h4>Tips for Better Results:</h4>
                    <ul>
                        <li>Speak clearly and at a moderate pace</li>
                        <li>Minimize background noise</li>
                        <li>Try to speak for at least 20-30 seconds</li>
                        <li>Avoid filler words like "um", "uh", "like"</li>
                        <li>Practice with both prepared and impromptu topics</li>
                    </ul>
                </div>
                """)
            
            submit_btn = gr.Button("Analyze Speech", variant="primary")
        
    with gr.Row():
        with gr.Column():
            transcription_output = gr.Textbox(label="πŸ“ Transcription", lines=3)
            corrected_output = gr.Textbox(label="✍️ Grammar Correction", lines=3)
            grammar_score_output = gr.Textbox(label="βœ… Grammar Score")
        
    with gr.Row():
        with gr.Column():
            metrics_chart = gr.Plot(label="Performance Metrics")
        with gr.Column():
            feedback_output = gr.Textbox(label="πŸ’¬ Feedback", lines=8)
    
    with gr.Accordion("Detailed Analysis", open=False):
        detailed_analysis = gr.Markdown()
    
    gr.HTML("""
    <div class="footer">
        <p>This tool provides an assessment of your spoken English. For professional evaluation, consult a qualified language instructor.</p>
    </div>
    """)
    
    submit_btn.click(
        fn=process_audio,
        inputs=[audio_input],
        outputs=[
            transcription_output,
            grammar_score_output, 
            corrected_output,
            feedback_output,
            metrics_chart,
            detailed_analysis
        ]
    )

if __name__ == "__main__":
    demo.launch()