Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from einops.layers.torch import Rearrange | |
from torch.nn.attention import SDPBackend, sdpa_kernel | |
from mmaudio.ext.rotary_embeddings import apply_rope | |
from mmaudio.model.low_level import MLP, ChannelLastConv1d, ConvMLP | |
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor): | |
return x * (1 + scale) + shift | |
def attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): | |
# training will crash without these contiguous calls and the CUDNN limitation | |
# I believe this is related to https://github.com/pytorch/pytorch/issues/133974 | |
# unresolved at the time of writing | |
q = q.contiguous() | |
k = k.contiguous() | |
v = v.contiguous() | |
out = F.scaled_dot_product_attention(q, k, v) | |
out = rearrange(out, 'b h n d -> b n (h d)').contiguous() | |
return out | |
class SelfAttention(nn.Module): | |
def __init__(self, dim: int, nheads: int): | |
super().__init__() | |
self.dim = dim | |
self.nheads = nheads | |
self.qkv = nn.Linear(dim, dim * 3, bias=True) | |
self.q_norm = nn.RMSNorm(dim // nheads) | |
self.k_norm = nn.RMSNorm(dim // nheads) | |
self.split_into_heads = Rearrange('b n (h d j) -> b h n d j', | |
h=nheads, | |
d=dim // nheads, | |
j=3) | |
def pre_attention( | |
self, x: torch.Tensor, | |
rot: Optional[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
# x: batch_size * n_tokens * n_channels | |
qkv = self.qkv(x) | |
q, k, v = self.split_into_heads(qkv).chunk(3, dim=-1) | |
q = q.squeeze(-1) | |
k = k.squeeze(-1) | |
v = v.squeeze(-1) | |
q = self.q_norm(q) | |
k = self.k_norm(k) | |
if rot is not None: | |
q = apply_rope(q, rot) | |
k = apply_rope(k, rot) | |
return q, k, v | |
def forward( | |
self, | |
x: torch.Tensor, # batch_size * n_tokens * n_channels | |
) -> torch.Tensor: | |
q, v, k = self.pre_attention(x) | |
out = attention(q, k, v) | |
return out | |
class MMDitSingleBlock(nn.Module): | |
def __init__(self, | |
dim: int, | |
nhead: int, | |
mlp_ratio: float = 4.0, | |
pre_only: bool = False, | |
kernel_size: int = 7, | |
padding: int = 3): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False) | |
self.attn = SelfAttention(dim, nhead) | |
self.pre_only = pre_only | |
if pre_only: | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True)) | |
else: | |
if kernel_size == 1: | |
self.linear1 = nn.Linear(dim, dim) | |
else: | |
self.linear1 = ChannelLastConv1d(dim, dim, kernel_size=kernel_size, padding=padding) | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False) | |
if kernel_size == 1: | |
self.ffn = MLP(dim, int(dim * mlp_ratio)) | |
else: | |
self.ffn = ConvMLP(dim, | |
int(dim * mlp_ratio), | |
kernel_size=kernel_size, | |
padding=padding) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 6 * dim, bias=True)) | |
def pre_attention(self, x: torch.Tensor, c: torch.Tensor, rot: Optional[torch.Tensor]): | |
# x: BS * N * D | |
# cond: BS * D | |
modulation = self.adaLN_modulation(c) | |
if self.pre_only: | |
(shift_msa, scale_msa) = modulation.chunk(2, dim=-1) | |
gate_msa = shift_mlp = scale_mlp = gate_mlp = None | |
else: | |
(shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, | |
gate_mlp) = modulation.chunk(6, dim=-1) | |
x = modulate(self.norm1(x), shift_msa, scale_msa) | |
q, k, v = self.attn.pre_attention(x, rot) | |
return (q, k, v), (gate_msa, shift_mlp, scale_mlp, gate_mlp) | |
def post_attention(self, x: torch.Tensor, attn_out: torch.Tensor, c: tuple[torch.Tensor]): | |
if self.pre_only: | |
return x | |
(gate_msa, shift_mlp, scale_mlp, gate_mlp) = c | |
x = x + self.linear1(attn_out) * gate_msa | |
r = modulate(self.norm2(x), shift_mlp, scale_mlp) | |
x = x + self.ffn(r) * gate_mlp | |
return x | |
def forward(self, x: torch.Tensor, cond: torch.Tensor, | |
rot: Optional[torch.Tensor]) -> torch.Tensor: | |
# x: BS * N * D | |
# cond: BS * D | |
x_qkv, x_conditions = self.pre_attention(x, cond, rot) | |
attn_out = attention(*x_qkv) | |
x = self.post_attention(x, attn_out, x_conditions) | |
return x | |
class JointBlock(nn.Module): | |
def __init__(self, dim: int, nhead: int, mlp_ratio: float = 4.0, pre_only: bool = False): | |
super().__init__() | |
self.pre_only = pre_only | |
self.latent_block = MMDitSingleBlock(dim, | |
nhead, | |
mlp_ratio, | |
pre_only=False, | |
kernel_size=3, | |
padding=1) | |
self.clip_block = MMDitSingleBlock(dim, | |
nhead, | |
mlp_ratio, | |
pre_only=pre_only, | |
kernel_size=3, | |
padding=1) | |
self.text_block = MMDitSingleBlock(dim, nhead, mlp_ratio, pre_only=pre_only, kernel_size=1) | |
def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, text_f: torch.Tensor, | |
global_c: torch.Tensor, extended_c: torch.Tensor, latent_rot: torch.Tensor, | |
clip_rot: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: | |
# latent: BS * N1 * D | |
# clip_f: BS * N2 * D | |
# c: BS * (1/N) * D | |
x_qkv, x_mod = self.latent_block.pre_attention(latent, extended_c, latent_rot) | |
c_qkv, c_mod = self.clip_block.pre_attention(clip_f, global_c, clip_rot) | |
t_qkv, t_mod = self.text_block.pre_attention(text_f, global_c, rot=None) | |
latent_len = latent.shape[1] | |
clip_len = clip_f.shape[1] | |
text_len = text_f.shape[1] | |
joint_qkv = [torch.cat([x_qkv[i], c_qkv[i], t_qkv[i]], dim=2) for i in range(3)] | |
attn_out = attention(*joint_qkv) | |
x_attn_out = attn_out[:, :latent_len] | |
c_attn_out = attn_out[:, latent_len:latent_len + clip_len] | |
t_attn_out = attn_out[:, latent_len + clip_len:] | |
latent = self.latent_block.post_attention(latent, x_attn_out, x_mod) | |
if not self.pre_only: | |
clip_f = self.clip_block.post_attention(clip_f, c_attn_out, c_mod) | |
text_f = self.text_block.post_attention(text_f, t_attn_out, t_mod) | |
return latent, clip_f, text_f | |
class FinalBlock(nn.Module): | |
def __init__(self, dim, out_dim): | |
super().__init__() | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True)) | |
self.norm = nn.LayerNorm(dim, elementwise_affine=False) | |
self.conv = ChannelLastConv1d(dim, out_dim, kernel_size=7, padding=3) | |
def forward(self, latent, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
latent = modulate(self.norm(latent), shift, scale) | |
latent = self.conv(latent) | |
return latent | |