Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,654 Bytes
742d895 b1f69aa 4508931 e4dd967 a00ca4e 502e234 72457cd c05ed6b 4508931 1d944c5 502e234 f0aff57 0a12c49 1d944c5 4508931 742d895 f0aff57 302e4bb 1d944c5 f0aff57 502e234 dd6912e ba6e5f1 dd6912e 98775f1 e0deb99 f55030b 6298b11 502e234 84d7485 502e234 a00ca4e 4508931 c05ed6b 502e234 4508931 502e234 a3c7875 4508931 502e234 4508931 762f660 4508931 751ed09 b9f5d1b 4508931 bd1a442 502e234 bd1a442 727aea3 4508931 be239af b9f5d1b 7e60999 562912b 4508931 be239af b9f5d1b 7e60999 4508931 be239af 502e234 7e60999 4508931 d80a29d 502e234 d80a29d 4508931 502e234 4508931 502e234 4508931 057f3fb 0245b21 4508931 057f3fb 4508931 24b4440 4508931 751ed09 502e234 a83ae72 4508931 502e234 7bf3d66 4508931 502e234 4508931 7f9e2a9 4508931 63c4892 c616813 502e234 4508931 502e234 4508931 502e234 eef0e16 502e234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from diffusers import AutoPipelineForText2Image, EulerAncestralDiscreteScheduler
from diffusers import UniPCMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import random
import os
from huggingface_hub import hf_hub_download
import torch
from torch import autocast
from safetensors import safe_open
from compel import Compel, ReturnedEmbeddingsType
from safetensors.torch import load_file
import spaces
model_id = "aipicasso/emix-0-4-turbo"
auth_token=os.environ["ACCESS_TOKEN"]
#adapter_id = "latent-consistency/lcm-lora-sdxl"
#adapter_id_2 = "manual.safetensors"
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler",token=auth_token)
pipe = AutoPipelineForText2Image.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler,
token=auth_token)
#pipe = AutoPipelineForText2Image.from_pretrained(
# model_id,
# torch_dtype=torch.float16,
# use_auth_token=auth_token
#)
#pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe=pipe.to("cuda")
#pipe.load_lora_weights(adapter_id)
#pipe.load_lora_weights(adapter_id_2)
#pipe.fuse_lora()
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
#pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
state_dict = load_file("unaestheticXLv31.safetensors")
pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True])
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
@spaces.GPU
def inference(prompt, guidance, steps, seed=0, neg_prompt="", disable_auto_prompt_correction=False):
global pipe
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,disable_auto_prompt_correction)
height=768
width=768
print(prompt,neg_prompt)
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
def auto_prompt_correction(prompt_ui,neg_prompt_ui,disable_auto_prompt_correction):
# auto prompt correction
prompt=str(prompt_ui)
neg_prompt=str(neg_prompt_ui)
prompt=prompt.lower()
neg_prompt=neg_prompt.lower()
if(disable_auto_prompt_correction):
return prompt, neg_prompt
if(prompt=="" and neg_prompt==""):
prompt="1girl, smile, brown bob+++ hair, brown eyes, sunflowers, sky"
neg_prompt=f"unaestheticXLv31, photo, deformed, realism, disfigured, low contrast, bad hand"
return prompt, neg_prompt
splited_prompt=prompt.replace(","," ").replace("_"," ").replace("+"," ").split(" ")
human_words=["1girl","girl","maid","maids","female","1woman","woman","girls","2girls","3girls","4girls","5girls","a couple of girls","women","1boy","boy","boys","a couple of boys","2boys","male","1man","1handsome","1bishounen","man","men","guy","guys"]
for word in human_words:
if( word in splited_prompt):
prompt=f"{prompt}"
neg_prompt=f"unaestheticXLv31,{neg_prompt}, photo, deformed, realism, disfigured, low contrast, bad hand"
return prompt, neg_prompt
animal_words=["cat","dog","bird","pigeon","rabbit","bunny","horse"]
for word in animal_words:
if( word in splited_prompt):
prompt=f"{prompt}, 4k, detailed"
neg_prompt=f"{neg_prompt},unaestheticXLv31"
return prompt, neg_prompt
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
for word in background_words:
if( word in splited_prompt):
prompt=f"{prompt}, highly detailed"
neg_prompt=f"girl, deformed+++, {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
return prompt, neg_prompt
return prompt,neg_prompt
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
conditioning, pooled = compel([prompt, neg_prompt])
result = pipe(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return result.images[0]
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="main-div">
<div>
<h1>Emix 0.4 Turbo Demo</h1>
</div>
<p>
Demo for Emix 0.4 Turbo<br>
</p>
<p>
サンプル: そのままGenerateボタンを押してください。<br>
sample : Click "Generate" button without any prompts.
</p>
<p>
sample prompt1 : 1girl, cool+, smile--, colorful long hair, colorful eyes, stars, night, pastel color, transparent+
</p>
<p>
sample prompt2 : 1boy, focus, wavy short hair, blue eyes, black shirt, white background, simple background
</p>
<p>
<a style="display:inline-block" href="https://huggingface.co/spaces/aipicasso/emi-latest-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> to say goodbye from waiting for the generating.
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]")
generate = gr.Button(value="Generate")
image_out = gr.Image()
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=1.5, maximum=10, step=0.1)
steps = gr.Slider(label="Steps", value=8, minimum=1, maximum=20, step=1)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
inputs = [prompt, guidance, steps, seed, neg_prompt, disable_auto_prompt_correction]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
demo.queue()
demo.launch() |