File size: 8,019 Bytes
502e234
4508931
 
 
 
e4dd967
a00ca4e
502e234
 
0a12c49
502e234
 
72457cd
4508931
58ba30b
502e234
98775f1
4508931
7f93a8e
0a12c49
98775f1
 
 
 
4508931
98775f1
 
 
 
 
502e234
 
98775f1
 
 
2e7e1d5
f55030b
6298b11
502e234
84d7485
 
 
502e234
 
 
 
 
a00ca4e
4508931
 
 
 
502e234
 
 
4508931
 
502e234
 
 
 
4508931
 
 
502e234
 
 
4508931
 
 
 
 
762f660
4508931
 
 
 
502e234
84d7485
4508931
bd1a442
502e234
bd1a442
727aea3
4508931
 
502e234
84d7485
7e60999
 
562912b
4508931
 
502e234
84d7485
7e60999
 
4508931
 
 
502e234
 
7e60999
 
4508931
 
 
502e234
4508931
502e234
 
 
 
 
4508931
 
502e234
 
4508931
502e234
4508931
 
 
 
 
 
 
 
 
98775f1
2e1dad6
eeeffd3
 
 
 
 
 
0245b21
2e1dad6
0245b21
4508931
58ba30b
4508931
 
24b4440
4508931
 
 
502e234
 
 
 
4508931
 
502e234
7bf3d66
4508931
 
 
 
 
 
 
 
502e234
 
4508931
7f9e2a9
4508931
 
 
 
 
 
 
 
98775f1
 
502e234
4508931
 
502e234
4508931
 
 
502e234
 
4508931
502e234
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import torch
from PIL import Image
import random
import os
from huggingface_hub import hf_hub_download
import torch
from torch import autocast
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
from safetensors import safe_open
from compel import Compel, ReturnedEmbeddingsType
from safetensors.torch import load_file

model_id = 'aipicasso/emi'
auth_token=os.environ["ACCESS_TOKEN"]
adapter_id = "latent-consistency/lcm-lora-sdxl"

#scheduler=DPMSolverMultistepScheduler()

#pipe = StableDiffusionXLPipeline.from_pretrained(
#  model_id,
#  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
#  use_auth_token=auth_token)

pipe = AutoPipelineForText2Image.from_pretrained(
    model_id, 
    torch_dtype=torch.float16,
    use_auth_token=auth_token
)

pipe=pipe.to("cuda")
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()

#pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
#pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

state_dict = load_file("unaestheticXLv31.safetensors")
pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)

compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , 
                text_encoder=[pipe.text_encoder, pipe.text_encoder_2], 
                returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, 
                requires_pooled=[False, True])

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def inference(prompt, guidance, steps, seed=0, neg_prompt="", disable_auto_prompt_correction=False):
  global pipe
    
  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None

  prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,disable_auto_prompt_correction)

  height=1024
  width=1024

  print(prompt,neg_prompt)
    
  return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None

def auto_prompt_correction(prompt_ui,neg_prompt_ui,disable_auto_prompt_correction):
    # auto prompt correction
    prompt=str(prompt_ui)
    neg_prompt=str(neg_prompt_ui)
    prompt=prompt.lower()
    neg_prompt=neg_prompt.lower()
    
    if(disable_auto_prompt_correction):
        return prompt, neg_prompt

    if(prompt=="" and neg_prompt==""):
        prompt="1girl++, smile--, brown bob+++ hair, brown eyes, sunflowers, sky, transparent++"
        neg_prompt=f"unaestheticXLv31---, photo, deformed, realism, disfigured, low contrast, bad hand"
        return prompt, neg_prompt

    splited_prompt=prompt.replace(","," ").replace("_"," ").replace("+"," ").split(" ")
    
    human_words=["1girl","girl","maid","maids","female","1woman","woman","girls","2girls","3girls","4girls","5girls","a couple of girls","women","1boy","boy","boys","a couple of boys","2boys","male","1man","1handsome","1bishounen","man","men","guy","guys"]
    for word in human_words:
        if( word in splited_prompt):
            prompt=f"anime artwork, anime style, {prompt}"
            neg_prompt=f"unaestheticXLv31---,{neg_prompt}, photo, deformed, realism, disfigured, low contrast, bad hand" 
            return prompt, neg_prompt
            
    animal_words=["cat","dog","bird","pigeon","rabbit","bunny","horse"]
    for word in animal_words:
        if( word in splited_prompt):
            prompt=f"anime style, a {prompt}, 4k, detailed"
            neg_prompt=f"{neg_prompt},unaestheticXLv31---" 
            return prompt, neg_prompt
            
    background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
    for word in background_words:
        if( word in splited_prompt):
            prompt=f"anime artwork, anime style, {prompt}, highly detailed"
            neg_prompt=f"girl, deformed+++, {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
            return prompt, neg_prompt
            
    return prompt,neg_prompt
    
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
    conditioning, pooled = compel([prompt, neg_prompt])
    
    result = pipe(
        prompt_embeds=conditioning[0:1],
        pooled_prompt_embeds=pooled[0:1], 
        negative_prompt_embeds=conditioning[1:2], 
        negative_pooled_prompt_embeds=pooled[1:2],
        num_inference_steps = int(steps),
        guidance_scale = guidance,
        width = width,
        height = height,
        generator = generator)
    
    return result.images[0]

css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="main-div">
              <div>
                <h1>Emi+LCM-LoRA Demo</h1>
                <!--
                <h2>
                Other Demos: 
                <a href="https://e5b26b1151bf4a7fe2.gradio.live"> | Emi Demo (Sub) | </a> 
                <a href="https://e4f3a9ae48c8c4921e.gradio.live"> Emi Stable Demo | </a> 
                <a href="https://07f0307923ad05d680.gradio.live"> Emix Demo 1 |</a> 
                <a href="https://471d8ebdaf5d5c5aa5.gradio.live/"> Emix Demo 2 |</a> 
                </h2>
                -->
              </div>
              <p>
               Demo for Emi<br>
              </p>
              <p>
              サンプル: そのままGenerateボタンを押してください。<br>
              sample : Click "Generate" button without any prompts.
              </p>
              <p>
              sample prompt1 : 1girl++, cool+, smile--, colorful long hair, colorful eyes, stars, night, pastel color, transparent+
              </p>
              <p>
              sample prompt2 : 1man+, focus, wavy short hair, blue eyes, black shirt, white background, simple background
              </p>
              <p>
              <a style="display:inline-block" href="https://huggingface.co/spaces/aipicasso/emi-latest-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> to say goodbye from waiting for the generating.
              </p>
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]")
                generate = gr.Button(value="Generate")

              image_out = gr.Image()
          error_output = gr.Markdown()

        with gr.Column(scale=45):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
              disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
                
              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=3, maximum=25)
                steps = gr.Slider(label="Steps", value=8, minimum=2, maximum=30, step=1)
    
              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

    inputs = [prompt, guidance, steps, seed, neg_prompt, disable_auto_prompt_correction]

    outputs = [image_out, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)
    
demo.queue(concurrency_count=1)
demo.launch()