Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,932 Bytes
4af9c2b d268852 4af9c2b 2bd6b89 c8d73ef 5e187cb c8d73ef 4af9c2b 4353309 4af9c2b 2d7c34b dd704f7 c8d73ef efbf68a c8d73ef a6b996a 8c49122 4af9c2b 2dfa028 3f3e9be fa169a4 c8d73ef 4af9c2b c8d73ef c8c57a4 e460ad9 0c3261b be881cb ce9b008 877ccbd 0358a3a 1622413 01fc9d8 23616f4 01fc9d8 fa169a4 4af9c2b 114766c c9a9082 c517e31 1b5ead2 e4cb216 c9a9082 056fb20 4af9c2b 8d3f01e 4af9c2b 36cdd82 4af9c2b 999c041 4af9c2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# Ref: https://huggingface.co/spaces/multimodalart/cosxl
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import spaces
import torch
import os
from compel import Compel, ReturnedEmbeddingsType
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
model_id = "aipicasso/emi-2"
token=os.environ["TOKEN"]
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token)
pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token)
negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors")
state_dict = load_file(negative_ti_file)
pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2)
pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer)
state_dict = load_file("unaestheticXL_Alb2.safetensors")
pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXL_Alb2", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2)
pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXL_Alb2", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer)
pipeline.load_lora_weights("fix_hands.pt")
pipe_normal.to("cuda")
pipe_normal.enable_freeu(s1=1.2, s2=0.7, b1=1.1, b2=1.3)
compel = Compel(tokenizer=[pipe_normal.tokenizer, pipe_normal.tokenizer_2] ,
text_encoder=[pipe_normal.text_encoder, pipe_normal.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True])
@spaces.GPU
def run_normal(prompt, negative_prompt="", guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
# ユーザーの著作権侵害を防ぐフィルター
words=["pokemon", "pikachu", "picachu", "mario", "sonic", "genshin"]
for word in words:
prompt=prompt.replace(word,"")
if(prompt==""):
conditioning, pooled = compel("1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom")
else:
conditioning, pooled = compel(prompt)
negative_conditioning, negatice_pooled = compel("(unaestheticXLv31)+++, (unaestheticXL_Alb2)++++, bad hands, bad anatomy, low quality, 3d, photo, realism, text, sign, "+negative_prompt)
result = pipe_normal(
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=negative_conditioning,
negative_pooled_prompt_embeds=negatice_pooled,
num_inference_steps = 25,
guidance_scale = guidance_scale,
width = 768,
height = 1344)
return result.images[0]
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
normal_examples = [
"1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom",
"1girl, (full body)++, brown bob short hair, brown eyes, school uniform, cherry blossom",
"no humans, manga, black and white, monochrome, Mt. fuji, 4k, highly detailed",
"no humans, manga, black and white, monochrome, Shibuya street, 4k, highly detailed",
"1boy, (upper body)++, silver very short hair, red eyes, looking at viewer, white background",
"1boy, (full body)++, silver very short hair, red eyes, looking at viewer, white background",
]
with gr.Blocks(css=css) as demo:
gr.Markdown('''# Emi 2
Official demo for [Emi 2](https://huggingface.co/aipicasso/emi-2). Click the generate button!<br>
本モデルの生成物は各種法令に従って取り扱って下さい。
''')
with gr.Group():
with gr.Row():
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: 1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom")
button_normal = gr.Button("Generate", min_width=120)
output_normal = gr.Image(label="Your result image", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_normal = gr.Textbox(label="Negative Prompt")
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7.5)
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True)
gr.on(
triggers=[
button_normal.click,
prompt_normal.submit
],
fn=run_normal,
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal],
outputs=[output_normal],
)
if __name__ == "__main__":
demo.launch(share=True) |