Spaces:
Sleeping
Sleeping
File size: 16,192 Bytes
76e8a07 f2acee5 76e8a07 a1c0d1f 76e8a07 1b5f903 76e8a07 a1c0d1f 76e8a07 de7714f 1b5f903 76e8a07 d6bab4e 1b5f903 d6bab4e de7714f d6bab4e 1b5f903 de7714f d6bab4e de7714f 1b5f903 d6bab4e 1b5f903 d6bab4e 1b5f903 d6bab4e 1b5f903 d6bab4e 1b5f903 d6bab4e 1b5f903 d6bab4e de7714f 1b5f903 d6bab4e 1b5f903 d6bab4e 1b5f903 d6bab4e 1b5f903 d6bab4e 1b5f903 d6bab4e de7714f 80602df de7714f 80602df de7714f 80602df de7714f 80602df de7714f 80602df de7714f 76e8a07 f3eb26f 76e8a07 f3eb26f 76e8a07 f3eb26f f2acee5 f3eb26f f2acee5 f3eb26f 76e8a07 a1c0d1f f3eb26f 76e8a07 6d7bbfa 76e8a07 f2acee5 76e8a07 a1c0d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
from doctr.models import detection_predictor, recognition_predictor
from doctr.io import DocumentFile
from surya.recognition import RecognitionPredictor
from surya.detection import DetectionPredictor
from PIL import Image
# from functools import lru_cache
from torchvision import models
from typing import List
from fastapi import HTTPException
from data_models import Citizenship
import json
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import numpy as np
import cv2
import regex as re
import requests
# import os
import pickle
# Character sets
CHARACTER_NUM = "0123456789-"
CHARACTER_LETTER = ''' "()-./0123456789:?ABCDEFGHIKLMNOPQRSTUWYabcdefghijklmnoprstuvwyँंःअआइईउऊऋऌऍऎएऐऑऒओऔकखगघङचछजझञटठडढणतथदधनऩपफबभमयरऱलळऴवशषसह़ऽािीुूृॄॅॆेैॉॊोौ्ॐ॒॑॓॔क़ख़ग़ज़ड़ढ़फ़य़ॠॢ।॥०१२३४५६७८९॰ॱॲॻॼॽॾ^''' #"()-./0123456789:?ABCDEFGHIKLMNOPQRSTUWYabcdefghijklmnoprstuvwyँंःअआइईउऊऋऌऍऎएऐऑऒओऔकखगघङचछजझञटठडढणतथदधनऩपफबभमयरऱलळऴवशषसह़ऽािीुूृॄॅॆेैॉॊोौ्ॐ॒॑॓॔क़ख़ग़ज़ड़ढ़फ़य़ॠॢ।॥०१२३४५६७८९॰ॱॲॻॼॽॾ^"
# Model paths - these should be configurable
MODEL_PATHS = {
'dev_digits': "models/devnagri_digits_20k_v2.pth",
'roman_digits': "models/roman_digits_20k_v5.pth",
'dev_letter': "models/small_devnagari_letter.pth",
'classify_ne': "models/nepali_english_classifier.pth"
}
# Use GPU if available
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ResNetClassifier(nn.Module):
def __init__(self, num_classes=2):
super(ResNetClassifier, self).__init__()
self.base_model = models.resnet50(weights='IMAGENET1K_V2') # Pre-trained ResNet-50
for param in self.base_model.parameters():
param.requires_grad = False # Freeze base model
num_ftrs = self.base_model.fc.in_features
self.base_model.fc = nn.Sequential(
nn.Linear(num_ftrs, 128),
nn.ReLU(),
nn.Linear(128, num_classes)
)
def forward(self, x):
return self.base_model(x)
# Define the CRNN model
class CRNN(nn.Module):
def __init__(self, num_classes, input_size=(1, 64, 256)):
super(CRNN, self).__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(input_size[0], 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 64x128
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 32x64
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 16x32
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2) # 8x16
)
# Dimensions after conv: batch x 512 x 8 x 16
feature_height = input_size[1] // 16 # 64 -> 4 pools → 64/2^4 = 4
self.rnn = nn.LSTM(
input_size=512 * feature_height, # 512 * 4 = 2048
hidden_size=128,
num_layers=1,
bidirectional=True,
dropout=0.3,
batch_first=True
)
self.fc = nn.Linear(256, num_classes) # 256 for bidirectional
def forward(self, x):
x = self.conv_block(x) # (B, 512, H=4, W=16)
b, c, h, w = x.size()
x = x.permute(0, 3, 1, 2) # (B, W, C, H)
x = x.contiguous().view(b, w, c * h) # (B, seq_len, input_size)
x, _ = self.rnn(x) # (B, seq_len, 512)
x = self.fc(x) # (B, seq_len, num_classes)
return x
class OCRModelManager:
"""
Singleton class to manage OCR models and prevent repeated loading
"""
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(OCRModelManager, cls).__new__(cls)
cls._instance.models = {}
cls._instance.char_maps = {}
cls._instance.transforms = {}
cls._instance.initialize_transforms()
# Initialize doctr model once
cls._instance.roman_letter_model = recognition_predictor(pretrained=True)
return cls._instance
def initialize_transforms(self):
"""Initialize standard transforms used across models"""
self.transforms['standard'] = transforms.Compose([
transforms.Resize((64, 256)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
def get_model(self, model_type, character_set):
"""Get or load a model based on type"""
if model_type not in self.models:
if model_type not in MODEL_PATHS:
raise ValueError(f"Unknown model type: {model_type}")
# Create character to ID mapping
self.char_maps[model_type] = {
'id_to_char': {i: c for i, c in enumerate(character_set)},
'char_to_id': {c: i for i, c in enumerate(character_set)}
}
# Initialize and load model
model = CRNN(num_classes=len(character_set))
model.load_state_dict(torch.load(MODEL_PATHS[model_type], map_location=DEVICE))
model.eval() # Set to evaluation mode
model = model.to(DEVICE)
self.models[model_type] = model
return self.models[model_type], self.char_maps[model_type]
def preprocess_image(self, image_path, model_type):
"""Preprocess image based on model type"""
image = Image.open(image_path).convert('L')
# Apply specific preprocessing based on model type
if model_type != 'dev_letter':
# Binarize the image for digit models
image = image.point(lambda x: 0 if x < 128 else 255, 'L')
# Resize to model input size
image = image.resize((256, 64))
# Invert colors for dev_letter model
if model_type == 'dev_letter':
image = Image.eval(image, lambda x: 255 - x)
# Apply transforms
tensor_image = self.transforms['standard'](image).unsqueeze(0).to(DEVICE)
return tensor_image
def predict(self, image_path, model_type, character_set):
"""Make a prediction using the specified model"""
# Get or load model
model, char_map = self.get_model(model_type, character_set)
# Preprocess image
tensor_image = self.preprocess_image(image_path, model_type)
# Run inference
with torch.no_grad():
output = model(tensor_image)
output = output.permute(1, 0, 2) # (seq_len, batch_size, num_classes)
_, predicted = output.max(2)
predicted = predicted.permute(1, 0) # (batch_size, seq_len)
# Convert tokens to string
predicted_str = ''.join([char_map['id_to_char'][i] for i in predicted[0].cpu().numpy()])
return predicted_str
def predict_roman_letter(self, image_path):
"""Predict using the doctr model for Roman letters"""
img = DocumentFile.from_images(image_path)
result = self.roman_letter_model(img)
# print(result)
return result[0][0]
# Initialize the model manager as a singleton
ocr_manager = OCRModelManager()
# Simplified API functions
def dev_number(image_path):
"""Recognize Devanagari digits in an image"""
return ocr_manager.predict(image_path, 'dev_digits', CHARACTER_NUM)
def roman_number(image_path):
"""Recognize Roman digits in an image"""
return ocr_manager.predict(image_path, 'roman_digits', CHARACTER_NUM)
def dev_letter(image_path):
"""Recognize Devanagari letters in an image"""
return ocr_manager.predict(image_path, 'dev_letter', CHARACTER_LETTER)
def roman_letter(image_path):
"""Recognize Roman letters in an image"""
return ocr_manager.predict_roman_letter(image_path)
def predict_ne(image_path, device="cpu"):
# load label encoder
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNetClassifier(num_classes=4).to(device)
# model.eval()
transform = transforms.Compose([
transforms.Resize(256), # Resize shorter side to 256
transforms.CenterCrop(224), # Crop center 224x224 patch
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
image = Image.open(image_path).convert('RGB')
image_tensor = transform(image).unsqueeze(0).to(device)
# loading model weights/state_dict
model.load_state_dict(torch.load('models/dev_roman_classifier.pth', map_location=device))
model.eval()
# loading label encoder
with open('models/dev_roman_label_encoder.pkl', 'rb') as f:
le = pickle.load(f)
with torch.no_grad():
output = model(image_tensor)
_, predicted = torch.max(output, 1)
return le.inverse_transform([predicted.item()])[0]
doctr_detector = None
surya_recognition_predictor = None
surya_detection_predictor = None
def initialize_detector():
global doctr_detector, surya_recognition_predictor, surya_detection_predictor
if doctr_detector is None:
doctr_detector = detection_predictor('db_mobilenet_v3_large', pretrained=True, assume_straight_pages=True, preserve_aspect_ratio=True)
if surya_recognition_predictor is None:
surya_recognition_predictor = RecognitionPredictor()
if surya_detection_predictor is None:
surya_detection_predictor = DetectionPredictor()
return doctr_detector, surya_recognition_predictor, surya_detection_predictor
def get_cleaned_boxes(out, page):
h, w, _ = page.shape
cleaned_boxes = []
for box in out[0]['words']:
coords = np.array(box[:4]) # 4 corner points (normalized)
coords *= np.array([w, h, w, h])
x1, y1, x2, y2 = coords
x_thresh = 0.7 * page.shape[1]
y_thresh = 0.3* page.shape[0]
if x1> x_thresh and y1 < y_thresh:
continue
if (x2 - x1) * (y2 - y1) < 100:
continue
cleaned_boxes.append(coords.astype('int'))
return cleaned_boxes
# The most inefficient code in existence
def merge_boxes_same_line(boxes, y_thresh=5, x_thresh=60):
# Sort boxes first by x and then by y
boxes = sorted(boxes, key=lambda b: (b[1],b[0]))
# Trying make all boxes within certain threshold have the same y coordinate for sorting
# Threshold for grouping rows
row_threshold = 15
aligned_boxes = []
current_row = []
current_y = boxes[0][1]
for box in boxes:
x1, y1, x2, y2 = box
if abs(y1 - current_y) <= row_threshold:
current_row.append(box)
else:
# Align all y1 and y2 in the row
avg_y1 = int(np.mean([b[1] for b in current_row]))
avg_y2 = int(np.mean([b[3] for b in current_row]))
aligned_boxes.extend([(b[0], avg_y1, b[2], avg_y2) for b in current_row])
current_row = [box]
current_y = y1
# Handle the last row
if current_row:
avg_y1 = int(np.mean([b[1] for b in current_row]))
avg_y2 = int(np.mean([b[3] for b in current_row]))
aligned_boxes.extend([(b[0], avg_y1, b[2], avg_y2) for b in current_row])
# After aligning all boxes on y axis, re sort them
aligned_boxes = sorted(aligned_boxes, key=lambda b: (b[1],b[0]))
# Merge adjacent boxes within certain threshold
merged = []
p_x1, p_y1, p_x2, p_y2 = aligned_boxes[0]
for i in range(1,len(aligned_boxes)):
x1, y1, x2, y2 = aligned_boxes[i]
if abs(p_y1 - y1) < y_thresh and abs(x1 - p_x2) < x_thresh:
p_x1 = min(p_x1, x1)
p_y1 = min(p_y1, y1)
p_x2 = max(p_x2, x2)
p_y2 = max(p_y2, y2)
else:
merged.append([p_x1, p_y1, p_x2, p_y2])
p_x1, p_y1, p_x2, p_y2 = x1, y1, x2, y2
merged.append([p_x1, p_y1, p_x2, p_y2])
return np.array(merged)
def ocr_citizenship(image_path: str) -> List[List[str]]:
doctr_detector, surya_recognition_predictor, surya_detection_predictor = initialize_detector()
page = cv2.imread(image_path)
page = cv2.convertScaleAbs(page, alpha=1.5, beta=0)
page = cv2.resize(page, (720,480))
out = doctr_detector([page])
cleaned_boxes = get_cleaned_boxes(out,page)
merged = merge_boxes_same_line(cleaned_boxes)
pattern = r'(नेपाली\s*नागरिकताको\s*प्रमाणपत्र){e<=6}'
prev_y = 0
start = False
first_start = True
y_thresh = 5
text_combine = ''
full_result = []
line_result = []
for boxes in merged[3:]:
x1, y1, x2, y2 = boxes[0],boxes[1],boxes[2],boxes[3]
crop = page[y1:y2,x1:x2]
pil_image = Image.fromarray(crop).convert('L')
# OCR PART
langs = ["en",'ne']
predictions = surya_recognition_predictor(images=[pil_image], langs=[langs],det_predictor=surya_detection_predictor)
text_combo = ''
for text_line in predictions[0].text_lines:
text_combo = text_combo + " " + text_line.text.strip()
text_combo = text_combo.strip()
# OCR PART END
if not start:
match = re.search(pattern, text_combo)
if match:
start = True
continue
if first_start:
first_start = False
prev_y = boxes[1]
if y1 - prev_y > y_thresh:
full_result.append(line_result)
line_result = []
line_result.append(text_combo)
prev_y = boxes[1]
return full_result
PARSE_PROMPT = "You are a parsing agent. Your task is to generate a json response from the given text corpus."
def create_local_model(message, base_model):
try:
ollama_endpoint = "api/chat"
url = f"https://aioverlords-amnil-internal-ollama.hf.space/proxy/{ollama_endpoint}"
# Data to send in the POST request
data = {
"data": {
"model": "aisingapore/Llama-SEA-LION-v3-8B-IT",
"messages": message,
"stream": False,
"format": base_model.model_json_schema()
}
}
response = requests.post(url, json=data)
# Check the response
if response.status_code == 200:
print(f"Request Success:", response.json())
return json.loads(response.json()["message"]["content"])
# return response.json()
else:
print(f"Request Error:", response.status_code, response.text)
raise HTTPException(status_code=response.status_code, detail=response.text)
except HTTPException as http_exec:
raise http_exec
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def perform_citizenship_ocr(image_path):
try:
unparsed_result = ocr_citizenship(image_path)
message = [
{"role": "system", "content": PARSE_PROMPT},
{"role": "user", "content": f"Given Text: \n{unparsed_result}"},
]
return create_local_model(message, Citizenship)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e)) |