Spaces:
Sleeping
Sleeping
File size: 15,725 Bytes
9dd777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import logging
from typing import Optional
from rdkit import Chem
from protac_splitter.chemoinformatics import (
canonize,
dummy2query,
remove_attach_atom,
remove_dummy_atoms,
)
from protac_splitter.evaluation import (
split_prediction,
check_reassembly,
)
from protac_splitter.data.curation.substructure_extraction import get_attachment_bonds
def fix_tetrahedral_centers_ligand(
protac_mol: Chem.Mol,
ligand_smiles: str,
attachment_id: int = 1,
) -> Optional[str]:
""" Fixes the tetrahedral centers of a ligand in a PROTAC molecule.
Args:
protac_mol (Chem.Mol): The RDKit molecule object of the PROTAC.
ligand_smiles (str): The SMILES of the ligand to fix.
attachment_id (int): The attachment point id of the ligand. Default is 1.
Returns:
A string containing the fixed ligand SMILES, or None if the fixing process failed.
"""
ligand_mol = Chem.MolFromSmiles(ligand_smiles)
if ligand_mol is None:
logging.error(f"Invalid ligand SMILES: {ligand_smiles}")
return None
ligand_mol = remove_dummy_atoms(ligand_mol)
ligand_match = protac_mol.GetSubstructMatch(ligand_mol, useChirality=False) # useChirality=True
# Get bonds to break to separate the ligand
bonds_to_break = get_attachment_bonds(protac_mol, ligand_match)
# Return if no bonds are found
if len(bonds_to_break) != 1:
logging.error('ERROR: Multiple attachment bonds')
return None
# Break the bonds to isolate the ligand
frag_ligand_mol = Chem.FragmentOnBonds(protac_mol, bonds_to_break, addDummies=True, dummyLabels=[(attachment_id, attachment_id)])
# Get the fragments resulting from bond breaking
try:
frags = Chem.GetMolFrags(frag_ligand_mol, asMols=True, sanitizeFrags=True)
except Exception as e:
logging.error(e)
return None
# Identify the ligand fragment
ligand_fragment = None
for frag in frags:
if frag.HasSubstructMatch(ligand_mol):
ligand_fragment = frag
break
if ligand_fragment is None:
logging.error('ERROR: POI fragment not found')
ligand_fixed = Chem.MolToSmiles(ligand_fragment)
ligand_fixed = canonize(ligand_fixed.replace(f'[{attachment_id}*]', f'[*:{attachment_id}]'))
return ligand_fixed
def fix_prediction(
protac_smiles: str,
pred_smiles: str,
poi_attachment_id: int = 1,
e3_attachment_id: int = 2,
remove_stereochemistry: bool = False,
verbose: int = 0,
) -> Optional[str]:
""" Fixes a prediction by replacing the substructure that does not match the PROTAC with the rest of the PROTAC.
Args:
protac_smiles (str): The SMILES of the PROTAC.
pred_smiles (str): The SMILES of the prediction.
poi_attachment_id (int): The attachment point id of the POI. Default is 1.
e3_attachment_id (int): The attachment point id of the E3 ligase. Default is 2.
verbose (int): The verbosity level. Default is 0.
Returns:
A string containing the fixed predictions, or None if the fixing process failed.
"""
protac_mol = Chem.MolFromSmiles(protac_smiles)
if protac_mol is None:
logging.warning(f"Invalid PROTAC SMILES: {protac_smiles}")
return None
substructs = split_prediction(pred_smiles)
# If there are at least two None values, there's nothing we can do to fix it
if sum(v is None for v in substructs.values()) >= 2:
logging.warning(f'Unable to continue, more than two substructures are not valid for given input: "{pred_smiles}"')
return None
# Get molecules of PROTAC and substructures
substructs = {k: {'smiles': v, 'mol': Chem.MolFromSmiles(v) if v is not None else v} for k, v in substructs.items()}
# Check if renaming the attachment points might already fix the prediction
for sub in ['poi', 'e3', 'both']:
if sub == 'e3':
if substructs['e3']['smiles'] is None:
continue
e3_attempt = substructs['e3']['smiles'].replace(f'[*:{poi_attachment_id}]', f'[*:{e3_attachment_id}]')
poi_attempt = substructs['poi']['smiles']
if sub == 'poi':
if substructs['poi']['smiles'] is None:
continue
e3_attempt = substructs['e3']['smiles']
poi_attempt = substructs['poi']['smiles'].replace(f'[*:{e3_attachment_id}]', f'[*:{poi_attachment_id}]')
else:
if substructs['e3']['smiles'] is None or substructs['poi']['smiles'] is None:
continue
e3_attempt = substructs['e3']['smiles'].replace(f'[*:{e3_attachment_id}]', f'[*:{poi_attachment_id}]')
poi_attempt = substructs['poi']['smiles'].replace(f'[*:{poi_attachment_id}]', f'[*:{e3_attachment_id}]')
protac_attempt = f"{e3_attempt}.{substructs['linker']['smiles']}.{poi_attempt}"
if check_reassembly(protac_smiles, protac_attempt):
logging.info(f'Input works when renaming attachment points in {sub.title()} substruct. SMILES: "{protac_attempt}"')
return protac_attempt
# Check if swapping the POI and E3 attachments in the linker might already fix the prediction
if substructs['linker']['smiles'] is None:
continue
linker_attempt = substructs['linker']['smiles']
linker_attempt = linker_attempt.replace(f'[*:{poi_attachment_id}]', f'[*:DUMMY]')
linker_attempt = linker_attempt.replace(f'[*:{e3_attachment_id}]', f'[*:{poi_attachment_id}]')
linker_attempt = linker_attempt.replace(f'[*:DUMMY]', f'[*:{e3_attachment_id}]')
# Try with the original POI and E3 substructures
protac_attempt = f"{substructs['e3']['smiles']}.{linker_attempt}.{substructs['poi']['smiles']}"
if check_reassembly(protac_smiles, protac_attempt):
logging.info(f'Input works when swapping POI and E3 attachment points in the linker. Fixed SMILES: "{protac_attempt}"')
return protac_attempt
# Try with the swapped POI and E3 substructures
protac_attempt = f"{e3_attempt}.{linker_attempt}.{poi_attempt}"
if check_reassembly(protac_smiles, protac_attempt):
logging.info(f'Input works when swapping POI and E3 attachment points in the linker and in {sub.title()} substruct. Fixed SMILES: "{protac_attempt}"')
return protac_attempt
# Check if removing stereochemistry results in a valid prediction
if remove_stereochemistry:
Chem.RemoveStereochemistry(protac_mol)
protac_smiles = Chem.MolToSmiles(protac_mol, canonical=True)
for k, v in substructs.items():
if v['mol'] is not None:
Chem.RemoveStereochemistry(v['mol'])
substructs[k]['smiles'] = Chem.MolToSmiles(v['mol'], canonical=True)
if all(v['mol'] is not None for v in substructs.values()):
if check_reassembly(
protac_smiles,
'.'.join([v['smiles'] for v in substructs.values()]),
):
logging.info(f'Input works when removing stereochemistry. SMILES: "{pred_smiles}"')
return f"{substructs['e3']['smiles']}.{substructs['linker']['smiles']}.{substructs['poi']['smiles']}"
# Check if any of the substructures is NOT a substructure of the PROTAC, if
# so, we mark it as the wrong substructure to fix.
num_matches = 0
wrong_substruct = None
for sub in ['poi', 'linker', 'e3']:
if substructs[sub]['mol'] is None:
substructs[sub]['match'] = False
wrong_substruct = sub
elif protac_mol.HasSubstructMatch(dummy2query(substructs[sub]['mol'])):
substructs[sub]['match'] = True
num_matches += 1
else:
substructs[sub]['match'] = False
wrong_substruct = sub
if num_matches < 2:
logging.warning(f'Prediction does not contain at least two matching substructures of the PROTAC. Num matches: {num_matches}. Prediction SMILES: "{pred_smiles}"')
return None
# If the wrong substructure is still matching in the PROTAC, we need to a
# more complex approach to fix the prediction (see below).
def remove_substructure(mol, substructure, attachment_id, replaceDummies=False):
if mol is None or substructure is None:
return None
smaller_mol = Chem.ReplaceCore(
mol,
substructure,
labelByIndex=False,
replaceDummies=replaceDummies,
)
if smaller_mol is None:
logging.warning(f'Failed to remove substructure from prediction SMILES: "{pred_smiles}"')
return None
smaller_smiles = Chem.MolToSmiles(smaller_mol, canonical=True)
smaller_smiles = smaller_smiles.replace('[1*]', f'[*:{attachment_id}]')
smaller_smiles = smaller_smiles.replace('[2*]', f'[*:{attachment_id}]')
smaller_mol = canonize(Chem.MolFromSmiles(smaller_smiles))
return smaller_mol
# If we still have 3 matches: for each substructure, we progressively remove
# the other substructures, then we check if the resulting molecule is valid
# and has only one fragment.
if num_matches == 3:
wrong_substruct = None
for sub in ['poi', 'linker', 'e3']:
removed_mol = Chem.MolFromSmiles(protac_smiles)
# Put the current substructure at the end of the list [poi, e3, linker]
sub_names = ['poi', 'e3', 'linker']
sub_names.remove(sub)
sub_names.append(sub)
# The linker often matches in many parts of the PROTAC, so we remove
# it when checking the E3 and POI substructures.
if sub != 'linker':
sub_names.remove('linker')
for s in sub_names:
attachment_id = poi_attachment_id if s == 'poi' else e3_attachment_id
removed_mol = remove_substructure(
removed_mol,
dummy2query(substructs[s]['mol']),
attachment_id=attachment_id,
)
# Check if resulting molecule is None, if so, it is the wrong one
if removed_mol is None:
substructs[sub]['match'] = False
wrong_substruct = sub
num_matches -= 1
break
# Count the number of fragments in the removed molecule
num_fragments = Chem.GetMolFrags(removed_mol, asMols=True, sanitizeFrags=False)
if len(num_fragments) > 1:
substructs[sub]['match'] = False
wrong_substruct = sub
num_matches -= 1
break
if num_matches == 3:
logging.warning(f'Prediction already contains all matching substructures of the PROTAC. Prediction SMILES: "{pred_smiles}"')
return None
# Get the order in which to remove the substructures and get the final one
# as the fixed molecule.
if wrong_substruct == 'linker':
poi_atoms = substructs['poi']['mol'].GetNumAtoms()
e3_atoms = substructs['e3']['mol'].GetNumAtoms()
order = ['poi', 'e3'] if poi_atoms > e3_atoms else ['e3', 'poi']
else:
if wrong_substruct == 'poi':
order = ['e3', 'linker']
else:
order = ['poi', 'linker']
logging.debug(f'Wrong substructure: {wrong_substruct.upper()}. Order: {order}')
fixed_mol = protac_mol
for sub in order:
logging.debug(f'Removing substructure {sub.upper()} from PROTAC.')
if 'linker' not in order:
fixed_attach_id = poi_attachment_id if sub == 'poi' else e3_attachment_id
else:
fixed_attach_id = poi_attachment_id if 'e3' in order else e3_attachment_id
if sub == 'linker':
attach_id = poi_attachment_id if wrong_substruct == 'poi' else e3_attachment_id
fixed_attach_id = poi_attachment_id if wrong_substruct == 'poi' else e3_attachment_id
query_mol = remove_attach_atom(substructs[sub]['mol'], attach_id)
replaceDummies = True
else:
query_mol = dummy2query(substructs[sub]['mol'])
replaceDummies = False
if verbose:
# display(Draw.MolToImage(fixed_mol, legend=f"Starting molecule", size=(800, 300)))
# display(Draw.MolToImage(query_mol, legend=f"Molecule {sub.upper()} to remove", size=(800, 300)))
pass
fixed_mol_tmp = remove_substructure(
fixed_mol,
query_mol,
attachment_id=fixed_attach_id,
replaceDummies=replaceDummies,
)
if fixed_mol_tmp is None:
logging.debug(f'Failed to replace substructure "{sub}" in prediction SMILES: "{pred_smiles}"')
continue
fixed_mol = fixed_mol_tmp
# If there are multiple fragments, keep the biggest one
fragments = Chem.GetMolFrags(fixed_mol, asMols=True)
if len(fragments) > 1:
logging.debug(f'Fixed molecule contains more than one fragment. Keeping the biggest one.')
max_frag = max(fragments, key=lambda x: x.GetNumAtoms())
fixed_mol = max_frag
# Get the SMILES of the fixed molecule
fixed_smiles = Chem.MolToSmiles(canonize(fixed_mol), canonical=True)
substructs[wrong_substruct]['smiles'] = fixed_smiles
if verbose:
# display(Draw.MolToImage(fixed_mol, legend=f"{wrong_substruct.upper()} fixed molecule: {fixed_smiles}", size=(800, 300)))
pass
# Concatenate the substructures check if the re-assembly is correct
fixed_pred_smiles = f"{substructs['e3']['smiles']}.{substructs['linker']['smiles']}.{substructs['poi']['smiles']}"
if not check_reassembly(
protac_smiles,
fixed_pred_smiles,
):
# logging.warning(f"Failed to fix prediction, re-assembly check failed. Generated fixed prediction (failing): {fixed_pred_smiles}")
# return None
# Check if by flipping the tetrahedral centers of the ligands we can
# still fix the prediction.
protac_mol = canonize(Chem.MolFromSmiles(protac_smiles))
chiral_centers = Chem.FindMolChiralCenters(
protac_mol,
includeUnassigned=True,
useLegacyImplementation=False,
)
if not chiral_centers:
logging.warning(f"Failed to fix prediction, re-assembly check failed. Generated fixed prediction (failing): {fixed_pred_smiles}")
return None
# Attempt to fix the tetrahedral centers of the ligands
e3_fixed = fix_tetrahedral_centers_ligand(protac_mol, substructs['e3']['smiles'], attachment_id=e3_attachment_id)
poi_fixed = fix_tetrahedral_centers_ligand(protac_mol, substructs['poi']['smiles'], attachment_id=poi_attachment_id)
if e3_fixed is None or poi_fixed is None:
logging.warning(f"Failed to fix prediction, re-assembly check failed. Generated fixed prediction (failing): {fixed_pred_smiles}")
return None
# Update the substructures with the fixed ligands and check re-assembly
substructs['e3']['smiles'] = e3_fixed
substructs['poi']['smiles'] = poi_fixed
fixed_pred_smiles = f"{substructs['e3']['smiles']}.{substructs['linker']['smiles']}.{substructs['poi']['smiles']}"
if not check_reassembly(
protac_smiles,
fixed_pred_smiles,
):
logging.warning(f"Failed to fix prediction, re-assembly check failed. Generated fixed prediction (failing): {fixed_pred_smiles}")
return None
return fixed_pred_smiles |