File size: 29,050 Bytes
5e01175 de956c8 5e01175 4e1d3f6 6a5a99e 5e01175 ccc40da 5e01175 6a5a99e 5e01175 62ccb16 b7582e0 4e1d3f6 5e01175 bda3015 5e01175 4e1d3f6 bda3015 5e01175 4e1d3f6 bda3015 5e01175 4e1d3f6 bda3015 5e01175 bda3015 5e01175 4e1d3f6 5e01175 b7582e0 5e01175 fec8df0 5e01175 bda3015 5e01175 4e1d3f6 f3d4b52 5e01175 4e1d3f6 f3d4b52 5e01175 4e1d3f6 f3d4b52 5e01175 f3d4b52 5e01175 f3d4b52 b7582e0 fec8df0 5e01175 6a5a99e bda3015 5e01175 b7582e0 62ccb16 5e01175 4e1d3f6 bda3015 251060c 5e01175 251060c 5e01175 b7582e0 4e1d3f6 5e01175 de956c8 5e01175 de956c8 5e01175 de956c8 5e01175 de956c8 15216c3 f3d4b52 15216c3 5e01175 15216c3 f3d4b52 15216c3 fec8df0 15216c3 f3d4b52 fec8df0 5e01175 251060c eaba7e8 251060c eaba7e8 251060c a589b70 251060c a589b70 251060c a589b70 251060c a589b70 251060c 62ccb16 251060c 62ccb16 5e01175 de956c8 5e01175 eaba7e8 a589b70 b7582e0 5e01175 8aec0bb 5e01175 bda3015 5e01175 251060c 5e01175 b7582e0 62ccb16 251060c bda3015 5e01175 0171744 5e01175 6a5a99e 4e1d3f6 b86d3ec 8aec0bb a589b70 5e01175 8aec0bb 5e01175 1171189 5e01175 4e1d3f6 5e01175 4e1d3f6 5e01175 4e1d3f6 5e01175 4e1d3f6 8aec0bb 5e01175 8aec0bb 0171744 5e01175 0171744 5e01175 4e1d3f6 5e01175 a589b70 5e01175 62ccb16 6a5a99e de956c8 6a5a99e 5e01175 0171744 5e01175 bda3015 5e01175 6a5a99e 5e01175 251060c 5e01175 6a5a99e 5e01175 b7582e0 5e01175 251060c 5e01175 fda7af7 b86d3ec 5e01175 fda7af7 5e01175 fda7af7 b86d3ec a589b70 b86d3ec a589b70 b86d3ec 5e01175 4e1d3f6 5e01175 de956c8 f3d4b52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
import warnings
import pickle
import logging
from typing import Literal, List, Tuple, Optional, Dict
from .protac_dataset import PROTAC_Dataset, get_datasets
from .config import config
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pytorch_lightning as pl
from torch.utils.data import Dataset, DataLoader
from torchmetrics import (
Accuracy,
AUROC,
Precision,
Recall,
F1Score,
MetricCollection,
)
from imblearn.over_sampling import SMOTE
from sklearn.preprocessing import StandardScaler
class PROTAC_Predictor(nn.Module):
def __init__(
self,
hidden_dim: int,
smiles_emb_dim: int = config.fingerprint_size,
poi_emb_dim: int = config.protein_embedding_size,
e3_emb_dim: int = config.protein_embedding_size,
cell_emb_dim: int = config.cell_embedding_size,
dropout: float = 0.2,
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'sum',
use_batch_norm: bool = False,
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
):
""" Initialize the PROTAC model.
Args:
hidden_dim (int): The hidden dimension of the model
smiles_emb_dim (int): The dimension of the SMILES embeddings
poi_emb_dim (int): The dimension of the POI embeddings
e3_emb_dim (int): The dimension of the E3 Ligase embeddings
cell_emb_dim (int): The dimension of the cell line embeddings
dropout (float): The dropout rate
join_embeddings (Literal['beginning', 'concat', 'sum']): How to join the embeddings
disabled_embeddings (list): List of disabled embeddings. Can be 'poi', 'e3', 'cell', 'smiles'
"""
super().__init__()
# Set our init args as class attributes
self.__dict__.update(locals())
# Define "surrogate models" branches
# NOTE: The softmax is used to ensure that the embeddings are normalized
# and can be summed on a "similar scale".
if self.join_embeddings != 'beginning':
if 'poi' not in self.disabled_embeddings:
self.poi_fc = nn.Sequential(
nn.Linear(poi_emb_dim, hidden_dim),
nn.Softmax(dim=1),
)
if 'e3' not in self.disabled_embeddings:
self.e3_fc = nn.Sequential(
nn.Linear(e3_emb_dim, hidden_dim),
nn.Softmax(dim=1),
)
if 'cell' not in self.disabled_embeddings:
self.cell_fc = nn.Sequential(
nn.Linear(cell_emb_dim, hidden_dim),
nn.Softmax(dim=1),
)
if 'smiles' not in self.disabled_embeddings:
self.smiles_emb = nn.Sequential(
nn.Linear(smiles_emb_dim, hidden_dim),
nn.Softmax(dim=1),
)
# Define hidden dimension for joining layer
if self.join_embeddings == 'beginning':
joint_dim = smiles_emb_dim if 'smiles' not in self.disabled_embeddings else 0
joint_dim += poi_emb_dim if 'poi' not in self.disabled_embeddings else 0
joint_dim += e3_emb_dim if 'e3' not in self.disabled_embeddings else 0
joint_dim += cell_emb_dim if 'cell' not in self.disabled_embeddings else 0
self.fc0 = nn.Linear(joint_dim, joint_dim)
elif self.join_embeddings == 'concat':
joint_dim = hidden_dim * (4 - len(self.disabled_embeddings))
elif self.join_embeddings == 'sum':
joint_dim = hidden_dim
self.fc1 = nn.Linear(joint_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
self.bnorm = nn.BatchNorm1d(hidden_dim)
self.dropout = nn.Dropout(p=dropout)
def forward(self, poi_emb, e3_emb, cell_emb, smiles_emb, return_embeddings=False):
embeddings = []
if self.join_embeddings == 'beginning':
# TODO: Remove this if-branch
if 'poi' not in self.disabled_embeddings:
embeddings.append(poi_emb)
if 'e3' not in self.disabled_embeddings:
embeddings.append(e3_emb)
if 'cell' not in self.disabled_embeddings:
embeddings.append(cell_emb)
if 'smiles' not in self.disabled_embeddings:
embeddings.append(smiles_emb)
x = torch.cat(embeddings, dim=1)
x = self.dropout(F.relu(self.fc0(x)))
else:
if 'poi' not in self.disabled_embeddings:
embeddings.append(self.poi_fc(poi_emb))
if torch.isnan(embeddings[-1]).any():
raise ValueError("NaN values found in POI embeddings.")
if 'e3' not in self.disabled_embeddings:
embeddings.append(self.e3_fc(e3_emb))
if torch.isnan(embeddings[-1]).any():
raise ValueError("NaN values found in E3 embeddings.")
if 'cell' not in self.disabled_embeddings:
embeddings.append(self.cell_fc(cell_emb))
if torch.isnan(embeddings[-1]).any():
raise ValueError("NaN values found in cell embeddings.")
if 'smiles' not in self.disabled_embeddings:
embeddings.append(self.smiles_emb(smiles_emb))
if torch.isnan(embeddings[-1]).any():
raise ValueError("NaN values found in SMILES embeddings.")
if self.join_embeddings == 'concat':
x = torch.cat(embeddings, dim=1)
elif self.join_embeddings == 'sum':
if len(embeddings) > 1:
embeddings = torch.stack(embeddings, dim=1)
x = torch.sum(embeddings, dim=1)
else:
x = embeddings[0]
if torch.isnan(x).any():
raise ValueError("NaN values found in sum of softmax-ed embeddings.")
x = F.relu(self.fc1(x))
h = self.bnorm(x) if self.use_batch_norm else self.self.dropout(x)
x = self.fc3(h)
if return_embeddings:
return x, h
return x
class PROTAC_Model(pl.LightningModule):
def __init__(
self,
hidden_dim: int,
smiles_emb_dim: int = config.fingerprint_size,
poi_emb_dim: int = config.protein_embedding_size,
e3_emb_dim: int = config.protein_embedding_size,
cell_emb_dim: int = config.cell_embedding_size,
batch_size: int = 128,
learning_rate: float = 1e-3,
dropout: float = 0.2,
use_batch_norm: bool = False,
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'sum',
train_dataset: PROTAC_Dataset = None,
val_dataset: PROTAC_Dataset = None,
test_dataset: PROTAC_Dataset = None,
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
apply_scaling: bool = True,
extra_optim_params: Optional[dict] = None,
):
""" Initialize the PROTAC Pytorch Lightning model.
Args:
hidden_dim (int): The hidden dimension of the model
smiles_emb_dim (int): The dimension of the SMILES embeddings
poi_emb_dim (int): The dimension of the POI embeddings
e3_emb_dim (int): The dimension of the E3 Ligase embeddings
cell_emb_dim (int): The dimension of the cell line embeddings
batch_size (int): The batch size
learning_rate (float): The learning rate
dropout (float): The dropout rate
join_embeddings (Literal['beginning', 'concat', 'sum']): How to join the embeddings
train_dataset (PROTAC_Dataset): The training dataset
val_dataset (PROTAC_Dataset): The validation dataset
test_dataset (PROTAC_Dataset): The test dataset
disabled_embeddings (list): List of disabled embeddings. Can be 'poi', 'e3', 'cell', 'smiles'
apply_scaling (bool): Whether to apply scaling to the embeddings
extra_optim_params (dict): Extra parameters for the optimizer
"""
super().__init__()
# Set our init args as class attributes
self.__dict__.update(locals()) # Add arguments as attributes
# Save the arguments passed to init
ignore_args_as_hyperparams = [
'train_dataset',
'test_dataset',
'val_dataset',
]
self.save_hyperparameters(ignore=ignore_args_as_hyperparams)
self.model = PROTAC_Predictor(
hidden_dim=hidden_dim,
smiles_emb_dim=smiles_emb_dim,
poi_emb_dim=poi_emb_dim,
e3_emb_dim=e3_emb_dim,
cell_emb_dim=cell_emb_dim,
dropout=dropout,
join_embeddings=join_embeddings,
use_batch_norm=use_batch_norm,
disabled_embeddings=[], # NOTE: This is handled in the PROTAC_Dataset classes
)
stages = ['train_metrics', 'val_metrics', 'test_metrics']
self.metrics = nn.ModuleDict({s: MetricCollection({
'acc': Accuracy(task='binary'),
'roc_auc': AUROC(task='binary'),
'precision': Precision(task='binary'),
'recall': Recall(task='binary'),
'f1_score': F1Score(task='binary'),
}, prefix=s.replace('metrics', '')) for s in stages})
# Misc settings
self.missing_dataset_error = \
'''Class variable `{0}` is None. If the model was loaded from a checkpoint, the dataset must be set manually:
model = {1}.load_from_checkpoint('checkpoint.ckpt')
model.{0} = my_{0}
'''
# Apply scaling in datasets
self.scalers = None
if self.apply_scaling and self.train_dataset is not None:
self.initialize_scalers()
def initialize_scalers(self):
"""Initialize or reinitialize scalers based on dataset properties."""
if self.scalers is None:
use_single_scaler = self.join_embeddings == 'beginning'
self.scalers = self.train_dataset.fit_scaling(use_single_scaler)
self.apply_scalers()
def apply_scalers(self):
"""Apply scalers to all datasets."""
use_single_scaler = self.join_embeddings == 'beginning'
if self.train_dataset:
self.train_dataset.apply_scaling(self.scalers, use_single_scaler)
if self.val_dataset:
self.val_dataset.apply_scaling(self.scalers, use_single_scaler)
if self.test_dataset:
self.test_dataset.apply_scaling(self.scalers, use_single_scaler)
def scale_tensor(
self,
tensor: torch.Tensor,
scaler: StandardScaler,
alpha: float = 1e-10,
) -> torch.Tensor:
"""Scale a tensor using a scaler. This is done to avoid using numpy
arrays (and stay on the same device).
Args:
tensor (torch.Tensor): The tensor to scale.
scaler (StandardScaler): The scaler to use.
Returns:
torch.Tensor: The scaled tensor.
"""
tensor = tensor.float()
if scaler.with_mean:
tensor -= torch.tensor(scaler.mean_, dtype=tensor.dtype, device=tensor.device)
if scaler.with_std:
tensor /= torch.tensor(scaler.scale_, dtype=tensor.dtype, device=tensor.device) + alpha
return tensor
def forward(self, poi_emb, e3_emb, cell_emb, smiles_emb, prescaled_embeddings=True, return_embeddings=False):
if not prescaled_embeddings:
if self.apply_scaling:
if self.join_embeddings == 'beginning':
embeddings = self.scale_tensor(
torch.hstack([smiles_emb, poi_emb, e3_emb, cell_emb]),
self.scalers,
)
smiles_emb = embeddings[:, :self.smiles_emb_dim]
poi_emb = embeddings[:, self.smiles_emb_dim:self.smiles_emb_dim+self.poi_emb_dim]
e3_emb = embeddings[:, self.smiles_emb_dim+self.poi_emb_dim:self.smiles_emb_dim+2*self.poi_emb_dim]
cell_emb = embeddings[:, -self.cell_emb_dim:]
else:
poi_emb = self.scale_tensor(poi_emb, self.scalers['Uniprot'])
e3_emb = self.scale_tensor(e3_emb, self.scalers['E3 Ligase Uniprot'])
cell_emb = self.scale_tensor(cell_emb, self.scalers['Cell Line Identifier'])
smiles_emb = self.scale_tensor(smiles_emb, self.scalers['Smiles'])
if torch.isnan(poi_emb).any():
raise ValueError("NaN values found in POI embeddings.")
if torch.isnan(e3_emb).any():
raise ValueError("NaN values found in E3 embeddings.")
if torch.isnan(cell_emb).any():
raise ValueError("NaN values found in cell embeddings.")
if torch.isnan(smiles_emb).any():
raise ValueError("NaN values found in SMILES embeddings.")
return self.model(poi_emb, e3_emb, cell_emb, smiles_emb, return_embeddings)
def step(self, batch, batch_idx, stage):
poi_emb = batch['poi_emb']
e3_emb = batch['e3_emb']
cell_emb = batch['cell_emb']
smiles_emb = batch['smiles_emb']
y = batch['active'].float().unsqueeze(1)
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
loss = F.binary_cross_entropy_with_logits(y_hat, y)
self.metrics[f'{stage}_metrics'].update(y_hat, y)
self.log(f'{stage}_loss', loss, on_epoch=True, prog_bar=True)
self.log_dict(self.metrics[f'{stage}_metrics'], on_epoch=True)
return loss
def training_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'train')
def validation_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'val')
def test_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'test')
def configure_optimizers(self):
# Define optimizer
if self.extra_optim_params is not None:
optimizer = optim.AdamW(self.parameters(), lr=self.learning_rate, **self.extra_optim_params)
else:
optimizer = optim.AdamW(self.parameters(), lr=self.learning_rate)
# Define LR scheduler
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer,
mode='min',
factor=0.1,
patience=0,
)
# if self.trainer.max_epochs:
# total_iters = self.trainer.max_epochs
# elif self.trainer.max_steps:
# total_iters = self.trainer.max_steps
# else:
# total_iters = 20
# lr_scheduler = optim.lr_scheduler.LinearLR(
# optimizer=optimizer,
# total_iters=total_iters,
# )
return {
'optimizer': optimizer,
'lr_scheduler': lr_scheduler,
'interval': 'step', # or 'epoch'
'frequency': 1,
'monitor': 'val_loss',
}
def predict_step(self, batch, batch_idx):
poi_emb = batch['poi_emb']
e3_emb = batch['e3_emb']
cell_emb = batch['cell_emb']
smiles_emb = batch['smiles_emb']
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
return torch.sigmoid(y_hat)
def train_dataloader(self):
if self.train_dataset is None:
format = 'train_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
# drop_last=True,
)
def val_dataloader(self):
if self.val_dataset is None:
format = 'val_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
shuffle=False,
)
def test_dataloader(self):
if self.test_dataset is None:
format = 'test_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
)
def on_save_checkpoint(self, checkpoint):
""" Serialize the scalers to the checkpoint. """
checkpoint['scalers'] = pickle.dumps(self.scalers)
def on_load_checkpoint(self, checkpoint):
"""Deserialize the scalers from the checkpoint."""
if 'scalers' in checkpoint:
self.scalers = pickle.loads(checkpoint['scalers'])
else:
self.scalers = None
if self.apply_scaling:
if self.scalers is not None:
# Re-apply scalers to ensure datasets are scaled
self.apply_scalers()
else:
logging.warning("Scalers not found in checkpoint. Consider re-fitting scalers if necessary.")
def get_confidence_scores(
true_ds: PROTAC_Dataset | torch.Tensor | np.ndarray,
y_preds: torch.Tensor | np.ndarray,
threshold: float = 0.5,
) -> Tuple[float, float]:
""" Get the mean value of the predictions for the false positives and false negatives.
Args:
true_ds (PROTAC_Dataset | torch.Tensor | np.ndarray): The true labels
y_preds (torch.Tensor | np.ndarray): The predictions
threshold (float): The threshold to use for the predictions
Returns:
Tuple[float, float]: The mean value of the predictions for the false positives and false negatives.
"""
# Convert PyTorch dataset labels to numpy array
if isinstance(true_ds, PROTAC_Dataset):
true_vals = np.array([x['active'] for x in true_ds]).flatten()
elif isinstance(true_ds, torch.Tensor):
true_vals = true_ds.numpy().flatten()
elif isinstance(true_ds, np.ndarray):
true_vals = true_ds.flatten()
else:
raise ValueError("Unknown type for true labels.")
if isinstance(y_preds, torch.Tensor):
preds = y_preds.numpy().flatten()
elif isinstance(y_preds, np.ndarray):
preds = y_preds.flatten()
else:
raise ValueError("Unknown type for predictions.")
# Get the indices of the false positives and false negatives
false_positives = (true_vals == 0) & ((preds > threshold).astype(int) == 1)
false_negatives = (true_vals == 1) & ((preds > threshold).astype(int) == 0)
# Get the mean value of the predictions for the false positives and false negatives
false_positives_mean = preds[false_positives].mean()
false_negatives_mean = preds[false_negatives].mean()
return false_positives_mean, false_negatives_mean
# TODO: Use some sort of **kwargs to pass all the parameters to the model...
def train_model(
protein2embedding: Dict[str, np.ndarray],
cell2embedding: Dict[str, np.ndarray],
smiles2fp: Dict[str, np.ndarray],
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: Optional[pd.DataFrame] = None,
hidden_dim: int = 768,
batch_size: int = 128,
learning_rate: float = 2e-5,
beta1: float = 0.9,
beta2: float = 0.999,
eps: float = 1e-8,
dropout: float = 0.2,
max_epochs: int = 50,
use_batch_norm: bool = False,
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'sum',
smote_k_neighbors: int = 5,
apply_scaling: bool = True,
active_label: str = 'Active',
fast_dev_run: bool = False,
use_logger: bool = True,
logger_save_dir: str = '../logs',
logger_name: str = 'protac',
enable_checkpointing: bool = False,
checkpoint_model_name: str = 'protac',
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
return_predictions: bool = False,
shuffle_embedding_prob: float = 0.0,
use_smote: bool = False,
) -> tuple:
""" Train a PROTAC model using the given datasets and hyperparameters.
Args:
protein2embedding (dict): A dictionary mapping protein identifiers to embeddings.
cell2embedding (dict): A dictionary mapping cell line identifiers to embeddings.
smiles2fp (dict): A dictionary mapping SMILES strings to fingerprints.
train_df (pd.DataFrame): The training dataframe.
val_df (pd.DataFrame): The validation dataframe.
test_df (Optional[pd.DataFrame]): The test dataframe.
hidden_dim (int): The hidden dimension of the model
batch_size (int): The batch size
learning_rate (float): The learning rate
dropout (float): The dropout rate
max_epochs (int): The maximum number of epochs
use_batch_norm (bool): Whether to use batch normalization
join_embeddings (Literal['beginning', 'concat', 'sum']): How to join the embeddings
smote_k_neighbors (int): The number of neighbors to use in SMOTE
use_smote (bool): Whether to use SMOTE
apply_scaling (bool): Whether to apply scaling to the embeddings
active_label (str): The name of the active label. Default: 'Active'
fast_dev_run (bool): Whether to run a fast development run (see PyTorch Lightning documentation)
use_logger (bool): Whether to use a logger
logger_save_dir (str): The directory to save the logs
logger_name (str): The name of the logger
enable_checkpointing (bool): Whether to enable checkpointing
checkpoint_model_name (str): The name of the model for checkpointing
disabled_embeddings (list): List of disabled embeddings. Can be 'poi', 'e3', 'cell', 'smiles'
return_predictions (bool): Whether to return predictions on the validation and test sets
Returns:
tuple: The trained model, the trainer, and the metrics over the validation and test sets.
"""
train_ds, val_ds, test_ds = get_datasets(
train_df,
val_df,
test_df,
protein2embedding,
cell2embedding,
smiles2fp,
smote_k_neighbors=smote_k_neighbors,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
shuffle_embedding_prob=shuffle_embedding_prob,
)
# NOTE: The embeddings dimensions should already match in all sets
smiles_emb_dim = train_ds.get_smiles_emb_dim()
poi_emb_dim = train_ds.get_protein_emb_dim()
e3_emb_dim = train_ds.get_protein_emb_dim()
cell_emb_dim = train_ds.get_cell_emb_dim()
loggers = [
pl.loggers.TensorBoardLogger(
save_dir=logger_save_dir,
version=logger_name,
name=logger_name,
),
pl.loggers.CSVLogger(
save_dir=logger_save_dir,
version=logger_name,
name=logger_name,
),
]
callbacks = [
pl.callbacks.EarlyStopping(
monitor='train_loss',
patience=10,
mode='min',
verbose=False,
),
pl.callbacks.EarlyStopping(
monitor='train_acc',
patience=10,
mode='max',
verbose=False,
),
pl.callbacks.EarlyStopping(
monitor='val_loss',
patience=5, # Original: 5
mode='min',
verbose=False,
),
pl.callbacks.EarlyStopping(
monitor='val_acc',
patience=10, # Original: 10
mode='max',
verbose=False,
),
]
if use_logger:
callbacks.append(pl.callbacks.LearningRateMonitor(logging_interval='step'))
if enable_checkpointing:
callbacks.append(pl.callbacks.ModelCheckpoint(
monitor='val_acc',
mode='max',
verbose=False,
filename=checkpoint_model_name + '-{epoch}-{val_acc:.2f}-{val_roc_auc:.3f}',
))
# Define Trainer
trainer = pl.Trainer(
logger=loggers if use_logger else False,
callbacks=callbacks,
max_epochs=max_epochs,
# val_check_interval=0.5,
fast_dev_run=fast_dev_run,
enable_model_summary=False,
enable_checkpointing=enable_checkpointing,
enable_progress_bar=False,
devices=1,
num_nodes=1,
)
extra_optim_params = {
'betas': (beta1, beta2),
'eps': eps,
}
model = PROTAC_Model(
hidden_dim=hidden_dim,
smiles_emb_dim=smiles_emb_dim,
poi_emb_dim=poi_emb_dim,
e3_emb_dim=e3_emb_dim,
cell_emb_dim=cell_emb_dim,
batch_size=batch_size,
join_embeddings=join_embeddings,
dropout=dropout,
use_batch_norm=use_batch_norm,
learning_rate=learning_rate,
apply_scaling=apply_scaling,
train_dataset=train_ds,
val_dataset=val_ds,
test_dataset=test_ds if test_df is not None else None,
disabled_embeddings=disabled_embeddings,
extra_optim_params=extra_optim_params,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
trainer.fit(model)
metrics = {}
# Add train metrics
train_metrics = {m: v.item() for m, v in trainer.callback_metrics.items() if 'train' in m}
metrics.update(train_metrics)
# Add validation metrics
val_metrics = trainer.validate(model, verbose=False)[0]
val_metrics = {m: v for m, v in val_metrics.items() if 'val' in m}
metrics.update(val_metrics)
# Add test metrics to metrics
if test_df is not None:
test_metrics = trainer.test(model, verbose=False)[0]
test_metrics = {m: v for m, v in test_metrics.items() if 'test' in m}
metrics.update(test_metrics)
# Return predictions
if return_predictions:
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=False)
val_pred = trainer.predict(model, val_dl)
val_pred = torch.concat(trainer.predict(model, val_dl)).squeeze()
fp_mean, fn_mean = get_confidence_scores(val_ds, val_pred)
metrics['val_false_positives_mean'] = fp_mean
metrics['val_false_negatives_mean'] = fn_mean
if test_df is not None:
test_dl = DataLoader(test_ds, batch_size=batch_size, shuffle=False)
test_pred = torch.concat(trainer.predict(model, test_dl)).squeeze()
fp_mean, fn_mean = get_confidence_scores(test_ds, test_pred)
metrics['test_false_positives_mean'] = fp_mean
metrics['test_false_negatives_mean'] = fn_mean
return model, trainer, metrics, val_pred, test_pred
return model, trainer, metrics, val_pred
return model, trainer, metrics
def evaluate_model(
model: PROTAC_Model,
trainer: pl.Trainer,
val_ds: PROTAC_Dataset,
test_ds: Optional[PROTAC_Dataset] = None,
batch_size: int = 128,
) -> tuple:
""" Evaluate a PROTAC model using the given datasets. """
ret = {}
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=False)
val_metrics = trainer.validate(model, val_dl, verbose=False)[0]
val_metrics = {m: v for m, v in val_metrics.items() if 'val' in m}
# Get predictions on validation set
val_pred = torch.cat(trainer.predict(model, val_dl)).squeeze()
ret['val_metrics'] = val_metrics
ret['val_pred'] = val_pred
if test_ds is not None:
test_dl = DataLoader(test_ds, batch_size=batch_size, shuffle=False)
test_metrics = trainer.test(model, test_dl, verbose=False)[0]
test_metrics = {m: v for m, v in test_metrics.items() if 'test' in m}
# Get predictions on test set
test_pred = torch.cat(trainer.predict(model, test_dl)).squeeze()
ret['test_metrics'] = test_metrics
ret['test_pred'] = test_pred
return ret
def load_model(
ckpt_path: str,
) -> PROTAC_Model:
""" Load a PROTAC model from a checkpoint.
Args:
ckpt_path (str): The path to the checkpoint.
Returns:
PROTAC_Model: The loaded model.
"""
# NOTE: The `map_locat` argument is automatically handled in newer versions
# of PyTorch Lightning, but we keep it here for compatibility with older ones.
model = PROTAC_Model.load_from_checkpoint(
ckpt_path,
map_location=torch.device('cpu') if not torch.cuda.is_available() else None,
)
# NOTE: The following is left as example for eventually re-applying scaling
# with other datasets...
# if model.apply_scaling:
# model.apply_scalers()
return model.eval() |