File size: 14,364 Bytes
33f1644 a589b70 33f1644 1e811f2 33f1644 a589b70 33f1644 8315295 33f1644 a589b70 33f1644 1e811f2 a589b70 33f1644 8315295 33f1644 a589b70 33f1644 1171189 33f1644 1171189 33f1644 1171189 33f1644 1171189 33f1644 1171189 33f1644 1171189 33f1644 1171189 33f1644 1171189 a589b70 1171189 33f1644 1e811f2 33f1644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
from typing import Optional, Dict
import logging
import os
from .optuna_utils import get_majority_vote_metrics, get_dataframe_stats
from .protac_dataset import get_datasets
import optuna
import xgboost as xgb
import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, roc_auc_score, precision_score, recall_score, f1_score
import xgboost as xgb
import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, roc_auc_score, precision_score, recall_score, f1_score
import joblib
from optuna.samplers import TPESampler
import torch
xgb.set_config(verbosity=0)
def get_confidence_scores(y, y_pred, threshold=0.5):
# Calculate the likelihood for the false negative: get the mean value of
# the prediction for the false-positive and false-negatives
# Get the indices of the false positives and false negatives
false_positives = (y == 0) & ((y_pred > threshold).astype(int) == 1)
false_negatives = (y == 1) & ((y_pred > threshold).astype(int) == 0)
# Get the mean value of the predictions for the false positives and false negatives
false_positives_mean = y_pred[false_positives].mean()
false_negatives_mean = y_pred[false_negatives].mean()
return false_positives_mean, false_negatives_mean
def train_and_evaluate_xgboost(
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_df: pd.DataFrame,
val_df: pd.DataFrame,
params: dict,
test_df: Optional[pd.DataFrame] = None,
active_label: str = 'Active',
num_boost_round: int = 100,
shuffle_train_data: bool = False,
) -> tuple:
"""
Train and evaluate an XGBoost model with the given parameters.
Args:
train_df (pd.DataFrame): The training and validation data.
test_df (pd.DataFrame): The test data.
params (dict): Hyperparameters for the XGBoost model.
active_label (str): The active label column.
num_boost_round (int): Maximum number of epochs.
Returns:
tuple: The trained model, test predictions, and metrics.
"""
# Get datasets and their numpy arrays
train_ds, val_ds, test_ds = get_datasets(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_df,
val_df=val_df,
test_df=test_df,
disabled_embeddings=[],
active_label=active_label,
apply_scaling=False,
)
X_train, y_train = train_ds.get_numpy_arrays()
X_val, y_val = val_ds.get_numpy_arrays()
# Shuffle the training data
if shuffle_train_data:
idx = np.random.permutation(len(X_train))
X_train, y_train = X_train[idx], y_train[idx]
# Setup training and validation data in XGBoost data format
dtrain = xgb.DMatrix(X_train, label=y_train)
dval = xgb.DMatrix(X_val, label=y_val)
evallist = [(dval, 'eval'), (dtrain, 'train')]
# Setup test data
if test_df is not None:
X_test, y_test = test_ds.get_numpy_arrays()
dtest = xgb.DMatrix(X_test, label=y_test)
evallist.append((dtest, 'test'))
model = xgb.train(
params,
dtrain,
num_boost_round=num_boost_round,
evals=evallist,
early_stopping_rounds=10,
verbose_eval=False,
)
# Evaluate model
val_pred = model.predict(dval)
val_pred_binary = (val_pred > 0.5).astype(int)
fp_mean, fn_mean = get_confidence_scores(y_val, val_pred)
metrics = {
'val_acc': accuracy_score(y_val, val_pred_binary),
'val_roc_auc': roc_auc_score(y_val, val_pred),
'val_precision': precision_score(y_val, val_pred_binary),
'val_recall': recall_score(y_val, val_pred_binary),
'val_f1_score': f1_score(y_val, val_pred_binary),
'val_false_positives_mean': fp_mean,
'val_false_negatives_mean': fn_mean,
}
preds = {'val_pred': val_pred}
if test_df is not None:
test_pred = model.predict(dtest)
test_pred_binary = (test_pred > 0.5).astype(int)
fp_mean, fn_mean = get_confidence_scores(y_test, test_pred)
metrics.update({
'test_acc': accuracy_score(y_test, test_pred_binary),
'test_roc_auc': roc_auc_score(y_test, test_pred),
'test_precision': precision_score(y_test, test_pred_binary),
'test_recall': recall_score(y_test, test_pred_binary),
'test_f1_score': f1_score(y_test, test_pred_binary),
'test_false_positives_mean': fp_mean,
'test_false_negatives_mean': fn_mean,
})
preds.update({'test_pred': test_pred})
return model, preds, metrics
def xgboost_model_objective(
trial: optuna.Trial,
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_val_df: pd.DataFrame,
kf: StratifiedKFold,
groups: Optional[np.array] = None,
active_label: str = 'Active',
num_boost_round: int = 100,
model_name: Optional[str] = None,
) -> float:
""" Objective function for hyperparameter optimization with XGBoost.
Args:
trial (optuna.Trial): The Optuna trial object.
train_val_df (pd.DataFrame): The training and validation data.
kf (StratifiedKFold): Stratified K-Folds cross-validator.
test_df (Optional[pd.DataFrame]): The test data.
active_label (str): The active label column.
num_boost_round (int): Maximum number of epochs.
model_name (Optional[str]): The prefix name of the CV models to save, if supplied. Used as: `f"{model_name}_fold_{k}.json"`
"""
# Suggest hyperparameters to be used across the CV folds
params = {
'booster': 'gbtree',
'tree_method': 'hist', # if torch.cuda.is_available() else 'hist',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'eta': trial.suggest_float('eta', 1e-4, 1e-1, log=True),
'max_depth': trial.suggest_int('max_depth', 3, 10),
'min_child_weight': trial.suggest_float('min_child_weight', 1e-3, 10.0, log=True),
'gamma': trial.suggest_float('gamma', 1e-4, 1e-1, log=True),
'subsample': trial.suggest_float('subsample', 0.5, 1.0),
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1.0),
}
X = train_val_df.copy().drop(columns=active_label)
y = train_val_df[active_label].tolist()
report = []
val_preds = []
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
logging.info(f'Fold {k + 1}/{kf.get_n_splits()}')
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
# Get some statistics from the dataframes
stats = {
'model_type': 'XGBoost',
'fold': k,
'train_len': len(train_df),
'val_len': len(val_df),
'train_perc': len(train_df) / len(train_val_df),
'val_perc': len(val_df) / len(train_val_df),
}
stats.update(get_dataframe_stats(train_df, val_df, active_label=active_label))
if groups is not None:
stats['train_unique_groups'] = len(np.unique(groups[train_index]))
stats['val_unique_groups'] = len(np.unique(groups[val_index]))
bst, preds, metrics = train_and_evaluate_xgboost(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_df,
val_df=val_df,
params=params,
active_label=active_label,
num_boost_round=num_boost_round,
)
stats.update(metrics)
report.append(stats.copy())
val_preds.append(preds['val_pred'])
if model_name:
model_filename = f'{model_name}_fold{k}.json'
bst.save_model(model_filename)
logging.info(f'CV XGBoost model saved to: {model_filename}')
# Save the report in the trial
trial.set_user_attr('report', report)
trial.set_user_attr('val_preds', val_preds)
trial.set_user_attr('params', params)
# Get the average validation metrics across the folds
mean_val_roc_auc = np.mean([r['val_roc_auc'] for r in report])
logging.info(f'\tMean val ROC AUC: {mean_val_roc_auc:.4f}')
# Optuna aims to minimize the objective, so return the negative ROC AUC
return -mean_val_roc_auc
def xgboost_hyperparameter_tuning_and_training(
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_val_df: pd.DataFrame,
test_df: pd.DataFrame,
kf: StratifiedKFold,
groups: Optional[np.array] = None,
split_type: str = 'random',
n_models_for_test: int = 3,
n_trials: int = 50,
active_label: str = 'Active',
num_boost_round: int = 100,
study_filename: Optional[str] = None,
force_study: bool = False,
model_name: Optional[str] = None,
) -> dict:
""" Hyperparameter tuning and training of an XGBoost model.
Args:
train_val_df (pd.DataFrame): The training and validation data.
test_df (pd.DataFrame): The test data.
kf (StratifiedKFold): Stratified K-Folds cross-validator.
groups (Optional[np.array]): Group labels for the samples used while splitting the dataset into train/test set.
split_type (str): Type of the data split. Used for reporting information.
n_models_for_test (int): Number of models to train for testing.
fast_dev_run (bool): Whether to run a fast development run.
n_trials (int): Number of trials for hyperparameter optimization.
logger_save_dir (str): Directory to save logs.
logger_name (str): Name of the logger.
active_label (str): The active label column.
num_boost_round (int): Maximum number of epochs.
study_filename (Optional[str]): File name to save/load the Optuna study.
force_study (bool): Whether to force the study optimization even if the study file exists.
Returns:
dict: A dictionary containing reports from the CV and test.
"""
# Set the verbosity of Optuna
optuna.logging.set_verbosity(optuna.logging.WARNING)
# Create an Optuna study object
sampler = TPESampler(seed=42)
study = optuna.create_study(direction='minimize', sampler=sampler)
study_loaded = False
if study_filename and not force_study:
if os.path.exists(study_filename):
study = joblib.load(study_filename)
study_loaded = True
logging.info(f'Loaded study from {study_filename}')
if not study_loaded or force_study:
study.optimize(
lambda trial: xgboost_model_objective(
trial=trial,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_val_df=train_val_df,
kf=kf,
groups=groups,
active_label=active_label,
num_boost_round=num_boost_round,
),
n_trials=n_trials,
)
if study_filename:
joblib.dump(study, study_filename)
cv_report = pd.DataFrame(study.best_trial.user_attrs['report'])
hparam_report = pd.DataFrame([study.best_params])
# Train the best CV models and store their models by running the objective
if model_name:
xgboost_model_objective(
trial=study.best_trial,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_val_df=train_val_df,
kf=kf,
groups=groups,
active_label=active_label,
num_boost_round=num_boost_round,
model_name=f'{model_name}_cv_model_{split_type}',
)
# Retrain N models with the best hyperparameters (measure model uncertainty)
best_models = []
test_report = []
test_preds = []
for i in range(n_models_for_test):
logging.info(f'Training best model {i + 1}/{n_models_for_test}')
model, preds, metrics = train_and_evaluate_xgboost(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_val_df,
val_df=test_df,
params=study.best_trial.user_attrs['params'],
active_label=active_label,
num_boost_round=num_boost_round,
shuffle_train_data=True,
)
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
metrics['model_type'] = 'XGBoost'
metrics['test_model_id'] = i
metrics.update(get_dataframe_stats(
train_val_df,
test_df=test_df,
active_label=active_label,
))
test_report.append(metrics.copy())
test_preds.append(torch.tensor(preds['val_pred']))
best_models.append(model)
# Save the trained model
if model_name:
model_filename = f'{model_name}_best_model_{split_type}_n{i}-test_acc={metrics["test_acc"]:.2f}-test_roc_auc={metrics["test_roc_auc"]:.3f}.json'
model.save_model(model_filename)
logging.info(f'Best XGBoost model saved to: {model_filename}')
test_report = pd.DataFrame(test_report)
# Get the majority vote for the test predictions
majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
majority_vote_metrics.update(get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label))
majority_vote_report = pd.DataFrame([majority_vote_metrics])
majority_vote_report['model_type'] = 'XGBoost'
# Add a column with the split_type to all reports
for report in [cv_report, hparam_report, test_report, majority_vote_report]:
report['split_type'] = split_type
# Return the reports
return {
'cv_report': cv_report,
'hparam_report': hparam_report,
'test_report': test_report,
'majority_vote_report' :majority_vote_report,
}
|