File size: 4,100 Bytes
387e2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24cfcb0
 
387e2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24cfcb0
 
387e2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
from typing import Optional, Tuple

import cfg
import gradio as gr
import pandas as pd
from cfg import setup_buster

from buster.completers import Completion
from buster.utils import extract_zip

# Check if an openai key is set as an env. variable
if os.getenv("OPENAI_API_KEY") is None:
    print("Warning: No openai key detected. You can set it with 'export OPENAI_API_KEY=sk-...'.")

# Typehint for chatbot history
ChatHistory = list[list[Optional[str], Optional[str]]]

extract_zip("deeplake_store.zip", "deeplake_store")

buster = setup_buster(cfg.buster_cfg)


def add_user_question(user_question: str, chat_history: Optional[ChatHistory] = None) -> ChatHistory:
    """Adds a user's question to the chat history.

    If no history is provided, the first element of the history will be the user conversation.
    """
    if chat_history is None:
        chat_history = []
    chat_history.append([user_question, None])
    return chat_history


# def format_sources(matched_documents: pd.DataFrame) -> str:
#     if len(matched_documents) == 0:
#         return ""

#     matched_documents.similarity_to_answer = matched_documents.similarity_to_answer * 100

#     # drop duplicate pages (by title), keep highest ranking ones
#     matched_documents = matched_documents.sort_values("similarity_to_answer", ascending=False).drop_duplicates(
#         "title", keep="first"
#     )

#     documents_answer_template: str = (
#         "📝 Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
#     )
#     document_template: str = "[🦜 {document.title}], relevance: {document.similarity_to_answer:2.1f} %"

#     documents = "\n".join([document_template.format(document=document) for _, document in matched_documents.iterrows()])
#     footnote: str = "I'm a bot 🤖 and not always perfect and I'm still learning."

#     return documents_answer_template.format(documents=documents, footnote=footnote)


# def add_sources(history, completion):
#     if completion is None:
#         return history 

#     if completion.answer_relevant:
#         formatted_sources = format_sources(completion.matched_documents)
#         history.append([None, formatted_sources])

#     return history


def chat(chat_history: ChatHistory) -> Tuple[ChatHistory, Completion]:
    """Answer a user's question using retrieval augmented generation."""

    # We assume that the question is the user's last interaction
    user_input = chat_history[-1][0]

    # Do retrieval + augmented generation with buster
    completion = buster.process_input(user_input)

    # Stream tokens one at a time to the user
    chat_history[-1][1] = ""
    for token in completion.answer_generator:
        chat_history[-1][1] += token

        yield chat_history, completion


demo = gr.Blocks()

with demo:
    with gr.Row():
        gr.Markdown("<h3><center>Parrot 🦜: A Question-Answering Bot for 🫎 MOOSE documentation </center></h3>")


    chatbot = gr.Chatbot()

    with gr.Row():
        question_textbox = gr.Textbox(
            label="What's your question?",
            placeholder="Type your question here...",
            lines=1,
        )
        send_button = gr.Button(value="Send", variant="secondary")

    examples = gr.Examples(
        examples=[
            "How can I use PorousFlow?",
            "How do I use displaced mesh?",
            "Why is my application not converging?",
        ],
        inputs=question_textbox,
    )

    gr.Markdown("This application uses GPT to search the docs for relevant info and answer questions.")
    gr.Markdown("Find the full MOOSE documentation [here](https://mooseframework.inl.gov/index.html).")
    gr.HTML("️<center> Created with @aikubo")

    response = gr.State()

    # fmt: off
    gr.on(
        triggers=[send_button.click, question_textbox.submit],
        fn=add_user_question,
        inputs=[question_textbox],
        outputs=[chatbot]
    ).then(
        chat,
        inputs=[chatbot],
        outputs=[chatbot, response]
    )
    # fmt: on


demo.queue()
demo.launch(debug=True, share=True)