File size: 9,237 Bytes
a89e8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os

import random
import torch
import gradio as gr

from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download

import tempfile
from argparse import Namespace
import shutil

import dlib
import numpy as np
import torchvision.transforms as transforms
from torchvision import utils

from model.sg2_model import Generator
from generate_videos import project_code_by_edit_name

import clip
import urllib.request

model_dir = "models"
os.makedirs(model_dir, exist_ok=True)

model_repos = {
    "e4e": ("akhaliq/JoJoGAN_e4e_ffhq_encode", "e4e_ffhq_encode.pt"),
               "dlib": ("akhaliq/jojogan_dlib", "shape_predictor_68_face_landmarks.dat"),
               "base": ("akhaliq/jojogan-stylegan2-ffhq-config-f", "stylegan2-ffhq-config-f.pt"),
               "sketch": ("rinong/stylegan-nada-models", "sketch.pt"),
                "santa": ("mjdolan/stylegan-nada-models", "santa.pt"),
                "jesus": ("mjdolan/stylegan-nada-models", "jesus.pt"),
                "mariah": ("mjdolan/stylegan-nada-models", "mariah.pt"),
               "heat_miser": ("mjdolan/stylegan-nada-models", "heat.pt"),
               "claymation": ("mjdolan/stylegan-nada-models", "claymation.pt"),
                "elf": ("mjdolan/stylegan-nada-models", "elf.pt"),
                "krampus": ("mjdolan/stylegan-nada-models", "krampus.pt"),
                "grinch": ("mjdolan/stylegan-nada-models", "grinch.pt"),
                "jack_frost": ("mjdolan/stylegan-nada-models", "jack_frost.pt"),
                "rudolph": ("mjdolan/stylegan-nada-models", "rudolph.pt"),
                "home_alone": ("mjdolan/stylegan-nada-models", "home_alone.pt"),
                "puppet":("rinong/stylegan-nada-models", "plastic_puppet.pt"),
                "crochet": ("rinong/stylegan-nada-models", "crochet.pt"),
                "shrek": ("rinong/stylegan-nada-models", "shrek.pt"),
                "pixar": ("rinong/stylegan-nada-models", "pixar.pt")
}

interface_gan_map = {"None": None, "Masculine": ("gender", 1.0), "Feminine": ("gender", -1.0),
                     "Smiling": ("smile", 1.0),
                     "Frowning": ("smile", -1.0), "Young": ("age", -1.0), "Old": ("age", 1.0),
                     "Long Hair": ("hair_length", -1.0), "Short Hair": ("hair_length", 1.0)}


def get_models():
    os.makedirs(model_dir, exist_ok=True)

    model_paths = {}

    for model_name, repo_details in model_repos.items():
        download_path = hf_hub_download(repo_id=repo_details[0], filename=repo_details[1])
        model_paths[model_name] = download_path

    return model_paths


model_paths = get_models()


class ImageEditor(object):
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        latent_size = 512
        n_mlp = 8
        channel_mult = 2
        model_size = 1024

        self.generators = {}

        self.model_list = [name for name in model_paths.keys() if name not in ["e4e", "dlib"]]

        for model in self.model_list:
            g_ema = Generator(
                model_size, latent_size, n_mlp, channel_multiplier=channel_mult
            ).to(self.device)

            checkpoint = torch.load(model_paths[model], map_location=self.device)

            g_ema.load_state_dict(checkpoint['g_ema'])

            self.generators[model] = g_ema

        self.experiment_args = {"model_path": model_paths["e4e"]}
        self.experiment_args["transform"] = transforms.Compose(
            [
                transforms.Resize((256, 256)),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
            ]
        )
        self.resize_dims = (256, 256)

        model_path = self.experiment_args["model_path"]

        ckpt = torch.load(model_path, map_location="cuda:0" if torch.cuda.is_available() else "cpu")
        opts = ckpt["opts"]

        opts["checkpoint_path"] = model_path
        opts = Namespace(**opts)

        self.e4e_net = pSp(opts, self.device)
        self.e4e_net.eval()

        self.shape_predictor = dlib.shape_predictor(
            model_paths["dlib"]
        )


        self.clip_model, _ = clip.load("ViT-B/32", device=self.device)

        print("setup complete")

    def get_style_list(self):
        style_list = []

        for key in self.generators:
            style_list.append(key)

        return style_list

    def invert_image(self, input_image):
        input_image = self.run_alignment(str(input_image))

        input_image = input_image.resize(self.resize_dims)

        img_transforms = self.experiment_args["transform"]
        transformed_image = img_transforms(input_image)

        with torch.no_grad():
            images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
            result_image, latent = images[0], latents[0]

        inverted_latent = latent.unsqueeze(0).unsqueeze(1)

        return inverted_latent

    def get_generators_for_styles(self, output_styles, loop_styles=False):

        if "base" in output_styles:  # always start with base if chosen
            output_styles.insert(0, output_styles.pop(output_styles.index("base")))
        if loop_styles:
            output_styles.append(output_styles[0])

        return [self.generators[style] for style in output_styles]



    def get_target_latent(self, source_latent, alter, generators):
        np_source_latent = source_latent.squeeze(0).cpu().detach().numpy()
        if alter == "None":
            return random.choice([source_latent.squeeze(0),] * max((len(generators) - 1), 1))
        edit = interface_gan_map[alter]
        projected_code_np = project_code_by_edit_name(np_source_latent, edit[0], edit[1])
        return torch.from_numpy(projected_code_np).float().to(self.device)

    def edit_image(self, input, output_styles, edit_choices):
        return self.predict(input, output_styles, edit_choices=edit_choices)

    def predict(
            self,
            input,  # Input image path
            output_styles,  # Style checkbox options.
            loop_styles=False,  # Loop back to the initial style
            edit_choices=None,  # Optional dictionary with edit choice arguments
    ):

        if edit_choices is None:
            edit_choices = {"edit_type": "None"}

        # @title Align image
        out_dir = tempfile.mkdtemp()

        inverted_latent = self.invert_image(input)
        generators = self.get_generators_for_styles(output_styles, loop_styles)
        output_paths = []

        with torch.no_grad():
            for g_ema in generators:
                latent_for_gen = self.get_target_latent(inverted_latent, edit_choices, generators)

                img, _ = g_ema([latent_for_gen], input_is_latent=True, truncation=1, randomize_noise=False)

                output_path = os.path.join(out_dir, f"out_{len(output_paths)}.jpg")
                utils.save_image(img, output_path, nrow=1, normalize=True, range=(-1, 1))

                output_paths.append(output_path)

        return output_paths


    def run_alignment(self, image_path):
        aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
        print("Aligned image has shape: {}".format(aligned_image.size))
        return aligned_image

    def run_on_batch(self, inputs):
        images, latents = self.e4e_net(
            inputs.to(self.device).float(), randomize_noise=False, return_latents=True
        )
        return images, latents


editor = ImageEditor()
# Fetch image for analysis
img_url = "http://claireye.com.tw/img/230212a.jpg"
urllib.request.urlretrieve(img_url, "pose.jpg")
blocks = gr.Blocks(theme="darkdefault")

with blocks:
    gr.Markdown("<h1><center>Holiday Filters (StyleGAN-NADA)</center></h1>")
    gr.Markdown(
        "<div>Upload an image of your face, pick your desired output styles, pick any modifiers, and apply StyleGAN-based editing.</div>"
    )
    with gr.Row():
        with gr.Column():
            input_img = gr.Image(type="filepath", label="Input image")
        with gr.Column():
            style_choice = gr.CheckboxGroup(choices=editor.get_style_list(), value=editor.get_style_list(), type="value",                     label="Styles")
            alter = gr.Dropdown(
                choices=["None", "Masculine", "Feminine", "Smiling", "Frowning", "Young", "Old", "Short Hair",
                         "Long Hair"], value="None", label="Additional Modifiers")
            img_button = gr.Button("Edit Image")

    with gr.Row():
            img_output = gr.Gallery(label="Output Images")
            img_output.style(grid=(3, 3, 4, 4, 6, 6))

    img_button.click(fn=editor.edit_image, inputs=[input_img, style_choice, alter], outputs=img_output)
    ex = gr.Examples(examples=[['pose.jpg', editor.get_style_list(), "Smiling"], ['pose.jpg', editor.get_style_list(), "Long Hair"]], fn=editor.edit_image, inputs=[input_img, style_choice, alter],
                     outputs=[img_output], cache_examples=True,
                     run_on_click=True)
    ex.dataset.headers = [""]
    article = "<p style='text-align: center'><a href='http://claireye.com.tw'>Claireye</a> | 2023</p>"
    gr.Markdown(article)

blocks.launch(enable_queue=True)