File size: 9,295 Bytes
d241648
e7137c8
d241648
e7137c8
 
 
1023e7a
2a1d36f
 
 
f657ff8
2a1d36f
6a587db
59e2f6a
b4dc422
f4342d5
fbec79f
e7137c8
f4342d5
204f693
c96b67e
 
 
 
204f693
0f1e529
204f693
 
ce0d343
 
 
204f693
ce0d343
 
4e7618b
ce0d343
 
 
 
 
 
 
47ca329
2a1d36f
ce0d343
1023e7a
bee5346
1023e7a
 
 
 
28ab779
1023e7a
 
2a1d36f
f4342d5
2a1d36f
 
983c55a
2a1d36f
a62e14b
 
 
 
 
 
 
 
 
 
 
d7a467f
3b986ef
 
d7a467f
 
 
 
 
 
 
 
1023e7a
e7137c8
 
 
d241648
 
 
 
 
 
 
 
 
e7137c8
 
 
d241648
e7137c8
 
 
7ac4025
e7137c8
 
 
 
 
 
 
 
 
 
 
 
c96b67e
86de7ac
c96b67e
e7137c8
 
 
 
 
 
 
 
 
 
 
 
 
c96b67e
 
 
 
 
 
e7137c8
 
c96b67e
204f693
23ef31b
204f693
 
 
 
e7137c8
 
 
71224a5
 
f2bbaef
71224a5
 
 
1023e7a
 
 
b4dc422
 
 
 
 
 
 
1023e7a
b4dc422
 
1023e7a
b4dc422
1023e7a
b4dc422
 
 
 
 
 
1023e7a
 
b4dc422
1023e7a
b4dc422
 
 
 
 
 
9aa2220
 
b4dc422
 
 
 
 
 
9aa2220
 
b4dc422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4342d5
b4dc422
 
 
ef096c2
1023e7a
 
 
 
555d0b9
 
 
 
 
 
 
 
81aac09
 
555d0b9
1023e7a
ba7ccc0
 
 
f4342d5
ba7ccc0
 
e7137c8
1023e7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from PIL import Image
import base64
from io import BytesIO
import os
from mistralai import Mistral
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from huggingface_hub import hf_hub_download
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from openai import OpenAI
import config
from extras.expansion import FooocusExpansion
import re

expansion = FooocusExpansion()

api_key = os.getenv("MISTRAL_API_KEY")
client = Mistral(api_key=api_key)

client_open_ai = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=os.getenv('HF_TOKEN')
)

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)

good_vae = AutoencoderKL.from_pretrained("shuttleai/shuttle-3-diffusion", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("shuttleai/shuttle-3-diffusion", torch_dtype=dtype, vae=taef1).to(device)

pipe.load_lora_weights(hf_hub_download("aifeifei798/feifei-flux-lora-v1", "feifei.safetensors"), adapter_name = "feifei")
pipe.load_lora_weights(hf_hub_download("aifeifei798/feifei-flux-lora-v1", "FLUX-dev-lora-add_details.safetensors"), adapter_name = "FLUX-dev-lora-add_details")
pipe.load_lora_weights(hf_hub_download("aifeifei798/feifei-flux-lora-v1", "Shadow-Projection.safetensors"), adapter_name = "Shadow-Projection")
pipe.set_adapters(["feifei","FLUX-dev-lora-add_details","Shadow-Projection"], adapter_weights=[0.65,0.35,0.35])
pipe.fuse_lora(adapter_name=["feifei","FLUX-dev-lora-add_details","Shadow-Projection"], lora_scale=1.0)

pipe.unload_lora_weights()
torch.cuda.empty_cache()


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

css="""
#col-container {
    width: auto;
    height: 750px;
}
"""
@spaces.GPU()
def infer(prompt, quality_select, styles_Radio, FooocusExpansion_select, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True), guidance_scale=3.5):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    if not prompt:
        prompt = "the photo is a 18 yo jpop girl is looking absolutely adorable and gorgeous, with a playful and mischievous grin, her eyes twinkling with joy."
    if quality_select:
        prompt += ", masterpiece, best quality, very aesthetic, absurdres"
    if styles_Radio:
        for style_name in styles_Radio:
            for style in config.style_list:
                if style["name"] == style_name:
                    prompt += style["prompt"].replace("{prompt}", "the ")
    if FooocusExpansion_select:
        prompt = expansion(prompt, seed)
    image = pipe(
           prompt = "",
           prompt_2 = prompt,
           width = width,
           height = height,
           num_inference_steps = num_inference_steps, 
           generator = generator,
           guidance_scale=guidance_scale,
           output_type="pil",
    ).images[0] 
    return image, seed

def encode_image(image_path):
    """Encode the image to base64."""
    try:
        # 打开图片文件
        image = Image.open(image_path).convert("RGB")

        # 将图片转换为字节流
        buffered = BytesIO()
        image.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")

        return img_str
    except FileNotFoundError:
        print(f"Error: The file {image_path} was not found.")
        return None
    except Exception as e:  # 添加通用异常处理
        print(f"Error: {e}")
        return None

def predict(message, history, additional_dropdown):
    message_text = message.get("text", "")
    message_files = message.get("files", [])

    if message_files:
        # Getting the base64 string
        message_file = message_files[0]
        base64_image = encode_image(message_file)

        if base64_image is None:
            yield "Error: Failed to encode the image."
            return

        # Specify model
        model = "pixtral-large-2411"

        # Define the messages for the chat
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": message_text},
                    {
                        "type": "image_url",
                        "image_url": f"data:image/jpeg;base64,{base64_image}",
                    },
                ],
            }
        ]

        partial_message = ""
        for chunk in client.chat.stream(model=model, messages=messages):
            if chunk.data.choices[0].delta.content is not None:
                partial_message = partial_message + chunk.data.choices[0].delta.content
                yield partial_message

    else:
        stream = client_open_ai.chat.completions.create(
            model=additional_dropdown, 
            messages=[{"role": "user", "content": str(message_text)}], 
            temperature=0.5,
            max_tokens=1024,
            top_p=0.7,
            stream=True
        )

        partial_message = ""
        temp = ""
        for chunk in stream:
            if chunk.choices[0].delta.content is not None:
                temp += chunk.choices[0].delta.content
                yield temp
                
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Tab("Generator"):
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    placeholder="Enter your prompt",
                    max_lines = 12,
                    container=False
                )
                run_button = gr.Button("Run")
                result = gr.Image(label="Result", show_label=False, interactive=False)
                
                with gr.Accordion("Advanced Settings", open=False):
                
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                    with gr.Row():
                        
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=64,
                            value=896,
                        )
                        
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=64,
                            value=1152,
                        )
                    
                    with gr.Row():
                        
          
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=4,
                        )
                        guidancescale = gr.Slider(
                            label="Guidance scale",
                            minimum=0,
                            maximum=10,
                            step=0.1,
                            value=3.5,
                        )
            with gr.Tab("Styles"):
                quality_select = gr.Checkbox(label="high quality")
                FooocusExpansion_select = gr.Checkbox(label="FooocusExpansion",value=True)
                styles_name = [style["name"] for style in config.style_list]
                styles_Radio = gr.Dropdown(styles_name,label="Styles",multiselect=True)
                
        with gr.Column(scale=3,elem_id="col-container"):
            gr.ChatInterface(
                predict,
                type="messages",
                multimodal=True,
                additional_inputs =[gr.Dropdown(
                    ["CohereForAI/c4ai-command-r-plus-08-2024",
                     "meta-llama/Meta-Llama-3.1-70B-Instruct", 
                     "Qwen/Qwen2.5-72B-Instruct",
                     "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
                     "NousResearch/Hermes-3-Llama-3.1-8B",
                     "mistralai/Mistral-Nemo-Instruct-2407",
                     "microsoft/Phi-3.5-mini-instruct"],
                    value="meta-llama/Meta-Llama-3.1-70B-Instruct",
                    show_label=False,
                )]
            )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, quality_select, styles_Radio, FooocusExpansion_select, seed, randomize_seed, width, height, num_inference_steps, guidancescale],
        outputs = [result, seed]
    )
if __name__ == "__main__":
    demo.queue().launch()