File size: 4,204 Bytes
9857f35
 
 
a6fce5e
9857f35
4e9e36c
617166b
9857f35
3c28822
9857f35
3c28822
 
9f739e2
3c28822
36bb891
3c28822
 
 
 
 
 
 
 
 
ae26617
36bb891
9857f35
a6fce5e
9857f35
a6fce5e
 
9857f35
 
 
1cfbff2
9857f35
a6fce5e
 
 
 
 
bda227c
a6fce5e
9857f35
a6fce5e
9857f35
aca0d8c
6c283b9
639405d
 
9857f35
 
a6fce5e
9857f35
 
a6fce5e
9857f35
 
 
 
a6fce5e
9857f35
e7a2234
 
a6fce5e
 
9857f35
a6fce5e
9857f35
 
 
a0d7fba
9857f35
 
 
a6fce5e
27dc4a4
a6fce5e
7c39e00
a6fce5e
9857f35
a6fce5e
9857f35
 
 
 
 
 
 
a6fce5e
9857f35
a6fce5e
9857f35
a6fce5e
9857f35
 
 
 
e3226ac
f02151b
9857f35
a6fce5e
9857f35
 
 
 
e3226ac
f02151b
9857f35
a6fce5e
9857f35
a6fce5e
 
9857f35
 
 
 
 
09c04a7
9857f35
a6fce5e
 
 
 
 
 
f588de8
a6fce5e
9857f35
 
 
a6fce5e
 
 
9857f35
 
a6fce5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
from huggingface_hub import hf_hub_download

def feifeimodload():

    dtype = torch.bfloat16
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    pipe = DiffusionPipeline.from_pretrained(
        "aifeifei798/DarkIdol-flux-v1.1", torch_dtype=dtype
    ).to(device)
    
    pipe.vae.enable_slicing()
    pipe.vae.enable_tiling()
    pipe.unload_lora_weights()
    torch.cuda.empty_cache()
    return pipe
    
pipe = feifeimodload()


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    #prompt = f"{prompt}, slight smile, Master of Light and Shadow."
    image = pipe(
            prompt = prompt, 
            width = width,
            height = height,
            num_inference_steps = num_inference_steps, 
            generator = generator,
            guidance_scale=3.5
    ).images[0] 
    return image, seed
 
examples = [
    "real model slight smile girl in real life",
    "real model smile girl in real life",
    "real model girl in real life",
    "A high-resolution photograph of a Japanese female model in a serene, natural setting, with soft, warm lighting, and a minimalist aesthetic, showcasing a elegant fragrance bottle and the model's effortless, emotive expression, with impeccable styling, and a muted color palette, evoking a sense of understated luxury and refinement."
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# DarkIdol-flux
DarkIdol-flux is a text-to-image AI model designed to create aesthetic, detailed and diverse images from textual prompts in just 6-8 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=12,
                placeholder="Enter your prompt",
                container=False,
            )
            
        run_button = gr.Button("Run")
        
        result = gr.Image(label="Result", show_label=False,height=520)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=896,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=64,
                    value=1152,
                )
            
            with gr.Row():
                
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=6,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples=False
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()