Spaces:
Sleeping
Sleeping
File size: 994 Bytes
907b7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import torch
import numpy as np
# -- mixup data augmentation # mixup augmentation 계산
# from https://github.com/hongyi-zhang/mixup/blob/master/cifar/utils.py
def mixup_data(x, y, alpha=1.0, soft_labels = None, use_cuda=False):
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
if alpha > 0.:
lam = np.random.beta(alpha, alpha) # 베타 분포에서 표본 추출
else:
lam = 1.
batch_size = x.size()[0]
if use_cuda:
index = torch.randperm(batch_size).cuda() # 주어진 범위 내의 정수를 랜덤하게 생성 # tensor 를 gpu 에 할당
else:
index = torch.randperm(batch_size) # 주어진 범위 내의 정수를 랜덤하게 생성
mixed_x = lam * x + (1 - lam) * x[index,:]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
# mixup 적용
def mixup_criterion(y_a, y_b, lam):
return lambda criterion, pred: lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
|