File size: 8,129 Bytes
06d8add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023b809
17eb7fe
 
06d8add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aa551a
 
 
 
 
 
 
06d8add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e69f0d
 
f36cf8e
3e69f0d
 
54755ff
06d8add
 
 
 
59b5c95
 
06d8add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464264
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import sys

os.system('git clone https://github.com/facebookresearch/av_hubert.git')
os.chdir('/home/user/app/av_hubert')
os.system('git submodule init')
os.system('git submodule update')
os.chdir('/home/user/app/av_hubert/fairseq')
os.system('pip install ./')
os.system('pip install scipy')
os.system('pip install sentencepiece')
os.system('pip install python_speech_features')
os.system('pip install scikit-video')
os.system('pip install transformers')
os.system('pip install gradio==3.12')
os.system('pip install numpy==1.23.3')
os.chdir('/home/user/app')
os.makedirs("./result", exist_ok = True)
os.makedirs("./video/và/test", exist_ok = True)

# sys.path.append('/home/user/app/av_hubert')
sys.path.append('/home/user/app/av_hubert/avhubert')

print(sys.path)
print(os.listdir())
print(sys.argv, type(sys.argv))
sys.argv.append('dummy')



import dlib, cv2, os
import numpy as np
import skvideo
import skvideo.io
from tqdm import tqdm
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
from base64 import b64encode
import torch
import cv2
import tempfile
from argparse import Namespace
import fairseq
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.configs import GenerationConfig
from huggingface_hub import hf_hub_download
import gradio as gr
from pytube import YouTube

# os.chdir('/home/user/app/av_hubert/avhubert')

user_dir = "/home/user/app/av_hubert/avhubert"
utils.import_user_module(Namespace(user_dir=user_dir))
data_dir = "/home/user/app/video"

# ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
mean_face_path = "/home/user/app/20words_mean_face.npy"
mouth_roi_path = "/home/user/app/roi.mp4"
output_video_path = "/home/user/app/video/và/test"
modalities = ["video"]
gen_subset = "test"
gen_cfg = GenerationConfig(beam=20)
# models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
# models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
# saved_cfg.task.modalities = modalities
# saved_cfg.task.data = data_dir
# saved_cfg.task.label_dir = data_dir
# task = tasks.setup_task(saved_cfg.task)
# generator = task.build_generator(models, gen_cfg)

def get_youtube(video_url):
    yt = YouTube(video_url)
    abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
    print("Success download video")
    print(abs_video_path)
    return abs_video_path
    
import dlib, cv2, os
import numpy as np
import skvideo
import skvideo.io
from tqdm import tqdm
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
from IPython.display import HTML
from base64 import b64encode
import numpy as np

def convert_bgr2gray(data):
    # np.stack(배열_1, 배열_2, axis=0): 지정한 axis를 완전히 새로운 axis로 생각
    return np.stack([cv2.cvtColor(_, cv2.COLOR_BGR2GRAY) for _ in data], axis=0)
def save2npz(filename, data=None):
    """save2npz.
    :param filename: str, the fileanme where the data will be saved.
    :param data: ndarray, arrays to save to the file.
    """
    assert data is not None, "data is {}".format(data)
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    np.savez_compressed(filename, data=data)

def detect_landmark(image, detector, predictor):
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    face_locations  = detector(gray, 1)
    coords = None
    for (_, face_location) in enumerate(face_locations):
        if torch.cuda.is_available():
            rect = face_location.rect
        else:
            rect = face_location
        shape = predictor(gray, rect)
        coords = np.zeros((68, 2), dtype=np.int32)
        for i in range(0, 68):
            coords[i] = (shape.part(i).x, shape.part(i).y)
    return coords

def preprocess_video(input_video_path):
    if torch.cuda.is_available():
        detector = dlib.cnn_face_detection_model_v1(face_detector_path)
    else:
        detector = dlib.get_frontal_face_detector()
    
    predictor = dlib.shape_predictor(face_predictor_path)
    STD_SIZE = (256, 256)
    mean_face_landmarks = np.load(mean_face_path)
    stablePntsIDs = [33, 36, 39, 42, 45]
    videogen = skvideo.io.vread(input_video_path)
    frames = np.array([frame for frame in videogen])
    landmarks = []
    for frame in tqdm(frames):
        landmark = detect_landmark(frame, detector, predictor)
        landmarks.append(landmark)
    preprocessed_landmarks = landmarks_interpolate(landmarks)
    rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE, 
                          window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
    rois_gray=convert_bgr2gray(rois)
    save2npz(output_video_path, data=rois_gray)
    write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
    return mouth_roi_path
  


def predict(process_video):
    os.chdir('/home/user/app')
    os.system('bash TestVisual.sh')
    pred=[]
    with open("/home/user/app/result/ho.txt", 'r') as f:
        pred = f.readlines(prediction)
    return pred[-1]


# ---- Gradio Layout -----
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_in = gr.Video(label="Video đầu vào", mirror_webcam=False, interactive=True)
video_out = gr.Video(label="Video vùng môi", mirror_webcam=False, interactive=True) 
demo = gr.Blocks()
demo.encrypt = False
text_output = gr.Textbox()

with demo:
    # gr.Markdown('''
    #         <div>
    #         <h1 style='text-align: center'>Speech Recognition from Visual Lip Movement by Audio-Visual Hidden Unit BERT Model (AV-HuBERT)</h1>
    #         This space uses AV-HuBERT models from <a href='https://github.com/facebookresearch' target='_blank'><b>Meta Research</b></a> to recoginze the speech from Lip Movement 🤗
    #         <figure>
    #           <img src="https://huggingface.co/vumichien/AV-HuBERT/resolve/main/lipreading.gif" alt="Audio-Visual Speech Recognition">
    #           <figcaption> Speech Recognition from visual lip movement
    #           </figcaption>
    #         </figure>
    #         </div>
    #     ''')
    # with gr.Row():
    #         gr.Markdown('''
    #         ### Reading Lip movement with youtube link using Avhubert
    #         ##### Step 1a. Download video from youtube (Note: the length of video should be less than 10 seconds if not it will be cut and the face should be stable for better result)
    #         ##### Step 1b. You also can upload video directly 
    #         ##### Step 2. Generating landmarks surrounding mouth area
    #         ##### Step 3. Reading lip movement.
    #         ''')
    with gr.Row():         
        gr.Markdown('''
            ### You can test by following examples:
            ''')
    examples = gr.Examples(examples=
            [ "https://www.youtube.com/watch?v=ZXVDnuepW2s", 
              "https://www.youtube.com/watch?v=X8_glJn1B8o", 
              "https://www.youtube.com/watch?v=80yqL2KzBVw"],
          label="Examples", inputs=[youtube_url_in])
    with gr.Column():
          youtube_url_in.render()
          download_youtube_btn = gr.Button("Download Youtube video")
          download_youtube_btn.click(get_youtube, [youtube_url_in], [
              video_in])
          print(video_in)
    with gr.Row():  
        video_in.render()
        video_out.render()
    with gr.Row():
        detect_landmark_btn = gr.Button("Phát hiện mốc/cắt môi")
        detect_landmark_btn.click(preprocess_video, [video_in], [
            video_out])
        predict_btn = gr.Button("Dự đoán")
        predict_btn.click(predict, [video_out], [
            text_output])
    with gr.Row():
        # video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False) 
        text_output.render()
        
        
demo.launch(debug=True)