File size: 18,780 Bytes
6127b48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# coding: utf-8
from typing import Dict, List, Tuple, Union
import torch
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.tts.layers.tacotron.capacitron_layers import CapacitronVAE
from TTS.tts.layers.tacotron.gst_layers import GST
from TTS.tts.layers.tacotron.tacotron import Decoder, Encoder, PostCBHG
from TTS.tts.models.base_tacotron import BaseTacotron
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.capacitron_optimizer import CapacitronOptimizer
class Tacotron(BaseTacotron):
"""Tacotron as in https://arxiv.org/abs/1703.10135
It's an autoregressive encoder-attention-decoder-postnet architecture.
Check `TacotronConfig` for the arguments.
Args:
config (TacotronConfig): Configuration for the Tacotron model.
speaker_manager (SpeakerManager): Speaker manager to handle multi-speaker settings. Only use if the model is
a multi-speaker model. Defaults to None.
"""
def __init__(
self,
config: "TacotronConfig",
ap: "AudioProcessor" = None,
tokenizer: "TTSTokenizer" = None,
speaker_manager: SpeakerManager = None,
):
super().__init__(config, ap, tokenizer, speaker_manager)
# pass all config fields to `self`
# for fewer code change
for key in config:
setattr(self, key, config[key])
# set speaker embedding channel size for determining `in_channels` for the connected layers.
# `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based
# on the number of speakers infered from the dataset.
if self.use_speaker_embedding or self.use_d_vector_file:
self.init_multispeaker(config)
self.decoder_in_features += self.embedded_speaker_dim # add speaker embedding dim
if self.use_gst:
self.decoder_in_features += self.gst.gst_embedding_dim
if self.use_capacitron_vae:
self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim
# embedding layer
self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0)
self.embedding.weight.data.normal_(0, 0.3)
# base model layers
self.encoder = Encoder(self.encoder_in_features)
self.decoder = Decoder(
self.decoder_in_features,
self.decoder_output_dim,
self.r,
self.memory_size,
self.attention_type,
self.windowing,
self.attention_norm,
self.prenet_type,
self.prenet_dropout,
self.use_forward_attn,
self.transition_agent,
self.forward_attn_mask,
self.location_attn,
self.attention_heads,
self.separate_stopnet,
self.max_decoder_steps,
)
self.postnet = PostCBHG(self.decoder_output_dim)
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, self.out_channels)
# setup prenet dropout
self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference
# global style token layers
if self.gst and self.use_gst:
self.gst_layer = GST(
num_mel=self.decoder_output_dim,
num_heads=self.gst.gst_num_heads,
num_style_tokens=self.gst.gst_num_style_tokens,
gst_embedding_dim=self.gst.gst_embedding_dim,
)
# Capacitron layers
if self.capacitron_vae and self.use_capacitron_vae:
self.capacitron_vae_layer = CapacitronVAE(
num_mel=self.decoder_output_dim,
encoder_output_dim=self.encoder_in_features,
capacitron_VAE_embedding_dim=self.capacitron_vae.capacitron_VAE_embedding_dim,
speaker_embedding_dim=self.embedded_speaker_dim
if self.use_speaker_embedding and self.capacitron_vae.capacitron_use_speaker_embedding
else None,
text_summary_embedding_dim=self.capacitron_vae.capacitron_text_summary_embedding_dim
if self.capacitron_vae.capacitron_use_text_summary_embeddings
else None,
)
# backward pass decoder
if self.bidirectional_decoder:
self._init_backward_decoder()
# setup DDC
if self.double_decoder_consistency:
self.coarse_decoder = Decoder(
self.decoder_in_features,
self.decoder_output_dim,
self.ddc_r,
self.memory_size,
self.attention_type,
self.windowing,
self.attention_norm,
self.prenet_type,
self.prenet_dropout,
self.use_forward_attn,
self.transition_agent,
self.forward_attn_mask,
self.location_attn,
self.attention_heads,
self.separate_stopnet,
self.max_decoder_steps,
)
def forward( # pylint: disable=dangerous-default-value
self, text, text_lengths, mel_specs=None, mel_lengths=None, aux_input={"speaker_ids": None, "d_vectors": None}
):
"""
Shapes:
text: [B, T_in]
text_lengths: [B]
mel_specs: [B, T_out, C]
mel_lengths: [B]
aux_input: 'speaker_ids': [B, 1] and 'd_vectors':[B, C]
"""
aux_input = self._format_aux_input(aux_input)
outputs = {"alignments_backward": None, "decoder_outputs_backward": None}
inputs = self.embedding(text)
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
# B x T_in x encoder_in_features
encoder_outputs = self.encoder(inputs)
# sequence masking
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)
# global style token
if self.gst and self.use_gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
# speaker embedding
if self.use_speaker_embedding or self.use_d_vector_file:
if not self.use_d_vector_file:
# B x 1 x speaker_embed_dim
embedded_speakers = self.speaker_embedding(aux_input["speaker_ids"])[:, None]
else:
# B x 1 x speaker_embed_dim
embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1)
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers)
# Capacitron
if self.capacitron_vae and self.use_capacitron_vae:
# B x capacitron_VAE_embedding_dim
encoder_outputs, *capacitron_vae_outputs = self.compute_capacitron_VAE_embedding(
encoder_outputs,
reference_mel_info=[mel_specs, mel_lengths],
text_info=[inputs, text_lengths]
if self.capacitron_vae.capacitron_use_text_summary_embeddings
else None,
speaker_embedding=embedded_speakers if self.capacitron_vae.capacitron_use_speaker_embedding else None,
)
else:
capacitron_vae_outputs = None
# decoder_outputs: B x decoder_in_features x T_out
# alignments: B x T_in x encoder_in_features
# stop_tokens: B x T_in
decoder_outputs, alignments, stop_tokens = self.decoder(encoder_outputs, mel_specs, input_mask)
# sequence masking
if output_mask is not None:
decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs)
# B x T_out x decoder_in_features
postnet_outputs = self.postnet(decoder_outputs)
# sequence masking
if output_mask is not None:
postnet_outputs = postnet_outputs * output_mask.unsqueeze(2).expand_as(postnet_outputs)
# B x T_out x posnet_dim
postnet_outputs = self.last_linear(postnet_outputs)
# B x T_out x decoder_in_features
decoder_outputs = decoder_outputs.transpose(1, 2).contiguous()
if self.bidirectional_decoder:
decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask)
outputs["alignments_backward"] = alignments_backward
outputs["decoder_outputs_backward"] = decoder_outputs_backward
if self.double_decoder_consistency:
decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(
mel_specs, encoder_outputs, alignments, input_mask
)
outputs["alignments_backward"] = alignments_backward
outputs["decoder_outputs_backward"] = decoder_outputs_backward
outputs.update(
{
"model_outputs": postnet_outputs,
"decoder_outputs": decoder_outputs,
"alignments": alignments,
"stop_tokens": stop_tokens,
"capacitron_vae_outputs": capacitron_vae_outputs,
}
)
return outputs
@torch.no_grad()
def inference(self, text_input, aux_input=None):
aux_input = self._format_aux_input(aux_input)
inputs = self.embedding(text_input)
encoder_outputs = self.encoder(inputs)
if self.gst and self.use_gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, aux_input["style_mel"], aux_input["d_vectors"])
if self.capacitron_vae and self.use_capacitron_vae:
if aux_input["style_text"] is not None:
style_text_embedding = self.embedding(aux_input["style_text"])
style_text_length = torch.tensor([style_text_embedding.size(1)], dtype=torch.int64).to(
encoder_outputs.device
) # pylint: disable=not-callable
reference_mel_length = (
torch.tensor([aux_input["style_mel"].size(1)], dtype=torch.int64).to(encoder_outputs.device)
if aux_input["style_mel"] is not None
else None
) # pylint: disable=not-callable
# B x capacitron_VAE_embedding_dim
encoder_outputs, *_ = self.compute_capacitron_VAE_embedding(
encoder_outputs,
reference_mel_info=[aux_input["style_mel"], reference_mel_length]
if aux_input["style_mel"] is not None
else None,
text_info=[style_text_embedding, style_text_length] if aux_input["style_text"] is not None else None,
speaker_embedding=aux_input["d_vectors"]
if self.capacitron_vae.capacitron_use_speaker_embedding
else None,
)
if self.num_speakers > 1:
if not self.use_d_vector_file:
# B x 1 x speaker_embed_dim
embedded_speakers = self.speaker_embedding(aux_input["speaker_ids"])
# reshape embedded_speakers
if embedded_speakers.ndim == 1:
embedded_speakers = embedded_speakers[None, None, :]
elif embedded_speakers.ndim == 2:
embedded_speakers = embedded_speakers[None, :]
else:
# B x 1 x speaker_embed_dim
embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1)
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers)
decoder_outputs, alignments, stop_tokens = self.decoder.inference(encoder_outputs)
postnet_outputs = self.postnet(decoder_outputs)
postnet_outputs = self.last_linear(postnet_outputs)
decoder_outputs = decoder_outputs.transpose(1, 2)
outputs = {
"model_outputs": postnet_outputs,
"decoder_outputs": decoder_outputs,
"alignments": alignments,
"stop_tokens": stop_tokens,
}
return outputs
def before_backward_pass(self, loss_dict, optimizer) -> None:
# Extracting custom training specific operations for capacitron
# from the trainer
if self.use_capacitron_vae:
loss_dict["capacitron_vae_beta_loss"].backward()
optimizer.first_step()
def train_step(self, batch: Dict, criterion: torch.nn.Module) -> Tuple[Dict, Dict]:
"""Perform a single training step by fetching the right set of samples from the batch.
Args:
batch ([Dict]): A dictionary of input tensors.
criterion ([torch.nn.Module]): Callable criterion to compute model loss.
"""
text_input = batch["text_input"]
text_lengths = batch["text_lengths"]
mel_input = batch["mel_input"]
mel_lengths = batch["mel_lengths"]
linear_input = batch["linear_input"]
stop_targets = batch["stop_targets"]
stop_target_lengths = batch["stop_target_lengths"]
speaker_ids = batch["speaker_ids"]
d_vectors = batch["d_vectors"]
aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors}
outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input)
# set the [alignment] lengths wrt reduction factor for guided attention
if mel_lengths.max() % self.decoder.r != 0:
alignment_lengths = (
mel_lengths + (self.decoder.r - (mel_lengths.max() % self.decoder.r))
) // self.decoder.r
else:
alignment_lengths = mel_lengths // self.decoder.r
# compute loss
with autocast(enabled=False): # use float32 for the criterion
loss_dict = criterion(
outputs["model_outputs"].float(),
outputs["decoder_outputs"].float(),
mel_input.float(),
linear_input.float(),
outputs["stop_tokens"].float(),
stop_targets.float(),
stop_target_lengths,
outputs["capacitron_vae_outputs"] if self.capacitron_vae else None,
mel_lengths,
None if outputs["decoder_outputs_backward"] is None else outputs["decoder_outputs_backward"].float(),
outputs["alignments"].float(),
alignment_lengths,
None if outputs["alignments_backward"] is None else outputs["alignments_backward"].float(),
text_lengths,
)
# compute alignment error (the lower the better )
align_error = 1 - alignment_diagonal_score(outputs["alignments"])
loss_dict["align_error"] = align_error
return outputs, loss_dict
def get_optimizer(self) -> List:
if self.use_capacitron_vae:
return CapacitronOptimizer(self.config, self.named_parameters())
return get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr, self)
def get_scheduler(self, optimizer: object):
opt = optimizer.primary_optimizer if self.use_capacitron_vae else optimizer
return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, opt)
def before_gradient_clipping(self):
if self.use_capacitron_vae:
# Capacitron model specific gradient clipping
model_params_to_clip = []
for name, param in self.named_parameters():
if param.requires_grad:
if name != "capacitron_vae_layer.beta":
model_params_to_clip.append(param)
torch.nn.utils.clip_grad_norm_(model_params_to_clip, self.capacitron_vae.capacitron_grad_clip)
def _create_logs(self, batch, outputs, ap):
postnet_outputs = outputs["model_outputs"]
decoder_outputs = outputs["decoder_outputs"]
alignments = outputs["alignments"]
alignments_backward = outputs["alignments_backward"]
mel_input = batch["mel_input"]
linear_input = batch["linear_input"]
pred_linear_spec = postnet_outputs[0].data.cpu().numpy()
pred_mel_spec = decoder_outputs[0].data.cpu().numpy()
gt_linear_spec = linear_input[0].data.cpu().numpy()
gt_mel_spec = mel_input[0].data.cpu().numpy()
align_img = alignments[0].data.cpu().numpy()
figures = {
"pred_linear_spec": plot_spectrogram(pred_linear_spec, ap, output_fig=False),
"real_linear_spec": plot_spectrogram(gt_linear_spec, ap, output_fig=False),
"pred_mel_spec": plot_spectrogram(pred_mel_spec, ap, output_fig=False),
"real_mel_spec": plot_spectrogram(gt_mel_spec, ap, output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False),
}
if self.bidirectional_decoder or self.double_decoder_consistency:
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False)
# Sample audio
audio = ap.inv_spectrogram(pred_linear_spec.T)
return figures, {"audio": audio}
def train_log(
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
) -> None: # pylint: disable=no-self-use
figures, audios = self._create_logs(batch, outputs, self.ap)
logger.train_figures(steps, figures)
logger.train_audios(steps, audios, self.ap.sample_rate)
def eval_step(self, batch: dict, criterion: nn.Module):
return self.train_step(batch, criterion)
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
figures, audios = self._create_logs(batch, outputs, self.ap)
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, self.ap.sample_rate)
@staticmethod
def init_from_config(config: "TacotronConfig", samples: Union[List[List], List[Dict]] = None):
"""Initiate model from config
Args:
config (TacotronConfig): Model config.
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
Defaults to None.
"""
from TTS.utils.audio import AudioProcessor
ap = AudioProcessor.init_from_config(config)
tokenizer, new_config = TTSTokenizer.init_from_config(config)
speaker_manager = SpeakerManager.init_from_config(config, samples)
return Tacotron(new_config, ap, tokenizer, speaker_manager)
|