fffiloni's picture
Upload folder using huggingface_hub
eaa9650 verified
raw
history blame
4.16 kB
import gradio as gr
from urllib.parse import urlparse
import requests
import time
import os
from utils.gradio_helpers import parse_outputs, process_outputs
inputs = []
inputs.append(gr.Textbox(
label="Prompt", info='''Describe the subject. Include clothes and hairstyle for more consistency.'''
))
inputs.append(gr.Textbox(
label="Negative Prompt", info='''Things you do not want to see in your image'''
))
inputs.append(gr.Image(
label="Subject", type="filepath"
))
inputs.append(gr.Slider(
label="Number Of Outputs", info='''The number of images to generate.''', value=3,
minimum=1, maximum=20, step=1,
))
inputs.append(gr.Slider(
label="Number Of Images Per Pose", info='''The number of images to generate for each pose.''', value=1,
minimum=1, maximum=4, step=1,
))
inputs.append(gr.Checkbox(
label="Randomise Poses", info='''Randomise the poses used.''', value=True
))
inputs.append(gr.Dropdown(
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
))
inputs.append(gr.Number(
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=80
))
inputs.append(gr.Number(
label="Seed", info='''Set a seed for reproducibility. Random by default.''', value=None
))
names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed']
outputs = []
outputs.append(gr.Image())
outputs.append(gr.Image())
outputs.append(gr.Image())
outputs.append(gr.Image())
outputs.append(gr.Image())
expected_outputs = len(outputs)
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
headers = {'Content-Type': 'application/json'}
payload = {"input": {}}
base_url = "http://0.0.0.0:7860"
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{base_url}/file=" + value
if value is not None and value != "":
payload["input"][key] = value
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
if response.status_code == 200:
json_response = response.json()
#If the output component is JSON return the entire output response
if(outputs[0].get_config()["name"] == "json"):
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
difference_outputs = expected_outputs - len(processed_outputs)
# If less outputs than expected, hide the extra ones
if difference_outputs > 0:
extra_outputs = [gr.update(visible=False)] * difference_outputs
processed_outputs.extend(extra_outputs)
# If more outputs than expected, cap the outputs to the expected number
elif difference_outputs < 0:
processed_outputs = processed_outputs[:difference_outputs]
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
else:
if(response.status_code == 409):
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
raise gr.Error(f"The submission failed! Error: {response.status_code}")
title = "Demo for consistent-character cog image by fofr"
model_description = "Create images of a given character in different poses"
app = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title=title,
description=model_description,
allow_flagging="never",
)
app.launch(share=True)