File size: 1,723 Bytes
699a053
 
814942d
699a053
814942d
a977820
43e3b99
699a053
c83366d
814942d
 
 
 
 
699a053
fc2d715
 
699a053
 
 
 
 
 
 
 
 
fc2d715
699a053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4117b36
699a053
 
 
 
 
 
 
 
 
 
 
 
 
37f4991
53ce867
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import gradio as gr
from huggingface_hub import InferenceClient
import os

# Token aus Umgebungsvariable lesen
HF_TOKEN = os.getenv("tomoniaccess")
print("Token loaded:", HF_TOKEN is not None)  # Just to debug, remove later


# Client mit Token initialisieren
client = InferenceClient(
    model="mistralai/Mistral-7B-Instruct-v0.3",
    token=HF_TOKEN
)

print("inside dok")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]
    print("inside response")

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="Du bist ein freundlicher Chatbot. Antworte auf Deutsch.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()