Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,743 Bytes
2adb577 4535fc2 2adb577 cc516fa 2adb577 27539d2 cc516fa 2adb577 cc516fa 1bfbe04 cc516fa 2adb577 cc516fa 2adb577 cc516fa 2adb577 27539d2 cc516fa 2adb577 cc516fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import requests
import base64
import uuid
import json
import time
from typing import Dict, Optional, Any
from dotenv import load_dotenv
import os
from src.prompts import giga_system_prompt_i2v
# Load environment variables from .env file
load_dotenv()
AUTH_TOKEN = os.getenv("AUTH_TOKEN")
COOKIE = os.getenv("COOKIE")
# print(f"AUTH_TOKEN: {AUTH_TOKEN}")
# print(f"COOKIE: {COOKIE}")
def get_auth_token(timeout: float = 2) -> Dict[str, Any]:
"""
Get authentication token.
Args:
timeout (float): Timeout duration in seconds.
Returns:
Dict[str, Any]: Dictionary containing the access token and its expiration time.
"""
url = "https://beta.saluteai.sberdevices.ru/v1/token"
payload = 'scope=GIGACHAT_API_CORP'
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
'Accept': 'application/json',
'RqUID': str(uuid.uuid4()),
'Cookie': COOKIE,
'Authorization': f'Basic {AUTH_TOKEN}'
}
response = requests.post(url, headers=headers, data=payload, timeout=timeout)
response_dict = response.json()
return {
'access_token': response_dict['tok'],
'expires_at': response_dict['exp']
}
def check_auth_token(token_data: Dict[str, Any]) -> bool:
"""
Check if the authentication token is valid.
Args:
token_data (Dict[str, Any]): Dictionary containing token data.
Returns:
bool: True if the token is valid, False otherwise.
"""
return token_data['expires_at'] - time.time() > 5
token_data: Optional[Dict[str, Any]] = None
def get_response_json(
prompt: str,
model: str,
timeout: int = 120,
n: int = 1,
fuse_key_word: Optional[str] = None,
use_giga_censor: bool = False,
max_tokens: int = 128,
max_attempts: int = 5,
) -> requests.Response:
"""
Send a text generation request to the API.
Args:
prompt (str): The input prompt.
model (str): The model to be used for generation.
timeout (int): Timeout duration in seconds.
n (int): Number of responses.
fuse_key_word (Optional[str]): Additional keyword to include in the prompt.
use_giga_censor (bool): Whether to use profanity filtering.
max_tokens (int): Maximum number of tokens in the response.
Returns:
requests.Response: API response.
"""
global token_data
url = "https://beta.saluteai.sberdevices.ru/v1/chat/completions"
payload = json.dumps({
"model": model,
# "messages": [
# {
# "role": "user",
# "content": ' '.join([fuse_key_word, prompt]) if fuse_key_word else prompt
# }
# ],
"messages": [
{
"role": "system",
"content": giga_system_prompt_i2v
},
{
"role": "user",
"content": prompt
}
],
"temperature": 0.87,
"top_p": 0.47,
"n": n,
"stream": False,
"max_tokens": max_tokens,
"repetition_penalty": 1.07,
"profanity_check": use_giga_censor
})
if token_data is None or not check_auth_token(token_data):
token_data = get_auth_token()
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': f'Bearer {token_data["access_token"]}'
}
attempt_num = 0
while attempt_num < max_attempts:
try:
response = requests.post(url, headers=headers, data=payload, timeout=timeout)
response_dict = response.json()
return response_dict
except:
time.sleep(5)
attempt_num += 1
continue
return response_dict
def giga_generate(
prompt: str,
model_version: str = "GigaChat-Max",
max_tokens: int = 128,
max_attempts: int = 5
) -> str:
"""
Generate text using the GigaChat model.
Args:
prompt (str): The input prompt.
model_version (str): The version of the model to use.
max_tokens (int): Maximum number of tokens in the response.
Returns:
str: Generated text.
"""
response_dict = get_response_json(
prompt,
model_version,
use_giga_censor=False,
max_tokens=max_tokens,
max_attempts=max_attempts,
)
try:
if response_dict['choices'][0]['finish_reason'] == 'blacklist':
print('GigaCensor triggered!')
return 'Censored Text'
else:
response_str = response_dict['choices'][0]['message']['content']
return response_str
except:
return prompt |