Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,364 Bytes
9d3c2b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import time
import math
import torch
from torch import nn
from flash_attn import flash_attn_varlen_qkvpacked_func
from .utils import exist, get_freqs, cat_interleave, split_interleave, to_1dimension, to_3dimension
def apply_rotary(x, rope):
x_ = x.reshape(*x.shape[:-1], -1, 1, 2).to(torch.float32)
x_out = rope[..., 0] * x_[..., 0] + rope[..., 1] * x_[..., 1]
return x_out.reshape(*x.shape)
class TimeEmbeddings(nn.Module):
def __init__(self, model_dim, time_dim, max_period=10000.):
super().__init__()
assert model_dim % 2 == 0
self.freqs = get_freqs(model_dim // 2, max_period)
self.in_layer = nn.Linear(model_dim, time_dim, bias=True)
self.activation = nn.SiLU()
self.out_layer = nn.Linear(time_dim, time_dim, bias=True)
def forward(self, time):
args = torch.outer(time, self.freqs.to(device=time.device))
time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
return self.out_layer(self.activation(self.in_layer(time_embed)))
class TextEmbeddings(nn.Module):
def __init__(self, text_dim, model_dim):
super().__init__()
self.in_layer = nn.Linear(text_dim, model_dim, bias=True)
def forward(self, text_embed):
return self.in_layer(text_embed)
class VisualEmbeddings(nn.Module):
def __init__(self, visual_dim, model_dim, patch_size):
super().__init__()
self.patch_size = patch_size
self.in_layer = nn.Linear(math.prod(patch_size) * visual_dim, model_dim)
def forward(self, x):
duration, height, width, dim = x.shape
x = x.view(
duration // self.patch_size[0], self.patch_size[0],
height // self.patch_size[1], self.patch_size[1],
width // self.patch_size[2], self.patch_size[2], dim
).permute(0, 2, 4, 1, 3, 5, 6).flatten(3, 6)
return self.in_layer(x)
class RoPE3D(nn.Module):
def __init__(self, axes_dims, max_pos=(128, 128, 128), max_period=10000.):
super().__init__()
for i, (axes_dim, ax_max_pos) in enumerate(zip(axes_dims, max_pos)):
freq = get_freqs(axes_dim // 2, max_period)
pos = torch.arange(ax_max_pos, dtype=freq.dtype)
self.register_buffer(f'args_{i}', torch.outer(pos, freq))
def args(self, i, cu_seqlens):
args = self.__getattr__(f'args_{i}')
if torch.is_tensor(cu_seqlens):
args = torch.cat([args[:end] for end in torch.diff(cu_seqlens)])
else:
args = args[:cu_seqlens]
return args
def forward(self, x, cu_seqlens, scale_factor=(1., 1., 1.)):
duration, height, width = x.shape[:-1]
args = [
self.args(i, ax_cu_seqlens) / ax_scale_factor
for i, (ax_cu_seqlens, ax_scale_factor) in enumerate(zip([cu_seqlens, height, width], scale_factor))
]
args = torch.cat([
args[0].view(duration, 1, 1, -1).repeat(1, height, width, 1),
args[1].view(1, height, 1, -1).repeat(duration, 1, width, 1),
args[2].view(1, 1, width, -1).repeat(duration, height, 1, 1)
], dim=-1)
rope = torch.stack([torch.cos(args), -torch.sin(args), torch.sin(args), torch.cos(args)], dim=-1)
rope = rope.view(*rope.shape[:-1], 2, 2)
return rope.unsqueeze(-4)
class Modulation(nn.Module):
def __init__(self, time_dim, model_dim):
super().__init__()
self.activation = nn.SiLU()
self.out_layer = nn.Linear(time_dim, 6 * model_dim)
self.out_layer.weight.data.zero_()
self.out_layer.bias.data.zero_()
def forward(self, x, cu_seqlens):
modulation_params = self.out_layer(self.activation(x))
modulation_params = modulation_params.repeat_interleave(torch.diff(cu_seqlens), dim=0)
self_attn_params, ff_params = torch.chunk(modulation_params, 2, dim=-1)
return self_attn_params, ff_params
class MultiheadSelfAttention(nn.Module):
def __init__(self, num_channels, head_dim=64, attention_type='flash'):
super().__init__()
assert num_channels % head_dim == 0
self.attention_type = attention_type
self.num_heads = num_channels // head_dim
self.to_query_key_value = nn.Linear(num_channels, 3 * num_channels, bias=True)
self.query_norm = nn.LayerNorm(head_dim)
self.key_norm = nn.LayerNorm(head_dim)
self.output_layer = nn.Linear(num_channels, num_channels, bias=True)
def scaled_dot_product_attention(
self, visual_query_key_value, text_query_key_value, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type,
return_attn_probs=False
):
if self.attention_type == 'flash':
visual_shape, text_len = visual_query_key_value.shape[:3], text_cu_seqlens[1]
visual_query_key_value, visual_cu_seqlens = to_1dimension(
visual_query_key_value, visual_cu_seqlens, visual_shape, num_groups, attention_type
)
text_query_key_value = text_query_key_value.unsqueeze(0).expand(math.prod(num_groups), *text_query_key_value.size())
query_key_value = cat_interleave(visual_query_key_value, text_query_key_value, visual_cu_seqlens, text_cu_seqlens)
cu_seqlens = visual_cu_seqlens + text_cu_seqlens
max_seqlen = torch.diff(cu_seqlens).max()
query_key_value = query_key_value.flatten(0, 1)
large_cu_seqlens = torch.cat([cu_seqlens + i * cu_seqlens[-1] for i in range(math.prod(num_groups))])
out, softmax_lse, _ = flash_attn_varlen_qkvpacked_func(query_key_value, large_cu_seqlens, max_seqlen, return_attn_probs=True)
out = out.reshape(math.prod(num_groups), -1, *out.shape[1:]).flatten(-2, -1)
visual_out, text_out = split_interleave(out, cu_seqlens, text_len)
visual_out = to_3dimension(visual_out, visual_shape, num_groups, attention_type)
if return_attn_probs:
return (visual_out, text_out), softmax_lse, None
return visual_out, text_out
def forward(self, visual_embed, text_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type):
visual_shape = visual_embed.shape[:-1]
visual_query_key_value = self.to_query_key_value(visual_embed)
visual_query, visual_key, visual_value = torch.chunk(visual_query_key_value, 3, dim=-1)
visual_query = self.query_norm(visual_query.reshape(*visual_shape, self.num_heads, -1)).type_as(visual_query)
visual_key = self.key_norm(visual_key.reshape(*visual_shape, self.num_heads, -1)).type_as(visual_key)
visual_value = visual_value.reshape(*visual_shape, self.num_heads, -1)
visual_query = apply_rotary(visual_query, rope).type_as(visual_query)
visual_key = apply_rotary(visual_key, rope).type_as(visual_key)
visual_query_key_value = torch.stack([visual_query, visual_key, visual_value], dim=3)
text_len = text_embed.shape[0]
text_query_key_value = self.to_query_key_value(text_embed)
text_query, text_key, text_value = torch.chunk(text_query_key_value, 3, dim=-1)
text_query = self.query_norm(text_query.reshape(text_len, self.num_heads, -1)).type_as(text_query)
text_key = self.key_norm(text_key.reshape(text_len, self.num_heads, -1)).type_as(text_key)
text_value = text_value.reshape(text_len, self.num_heads, -1)
text_query_key_value = torch.stack([text_query, text_key, text_value], dim=1)
visual_out, text_out = self.scaled_dot_product_attention(
visual_query_key_value, text_query_key_value, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type
)
visual_out = self.output_layer(visual_out)
text_out = self.output_layer(text_out)
return visual_out, text_out
class MultiheadSelfAttentionTP(nn.Module):
def __init__(self, initial_multihead_self_attention):
super().__init__()
num_channels = initial_multihead_self_attention.to_query_key_value.weight.shape[1]
self.num_heads = initial_multihead_self_attention.num_heads
head_dim = num_channels // self.num_heads
self.attention_type = initial_multihead_self_attention.attention_type
self.to_query = nn.Linear(num_channels, num_channels, bias=True)
self.to_key = nn.Linear(num_channels, num_channels, bias=True)
self.to_value = nn.Linear(num_channels, num_channels, bias=True)
weight = initial_multihead_self_attention.to_query_key_value.weight
bias = initial_multihead_self_attention.to_query_key_value.bias
self.to_query.weight = torch.nn.Parameter(weight[:num_channels])
self.to_key.weight = torch.nn.Parameter(weight[num_channels:2 * num_channels])
self.to_value.weight = torch.nn.Parameter(weight[2 * num_channels:])
self.to_query.bias = torch.nn.Parameter(bias[:num_channels])
self.to_key.bias = torch.nn.Parameter(bias[num_channels:2 * num_channels])
self.to_value.bias = torch.nn.Parameter(bias[2 * num_channels:])
self.query_norm = initial_multihead_self_attention.query_norm
self.key_norm = initial_multihead_self_attention.key_norm
self.output_layer = initial_multihead_self_attention.output_layer
def scaled_dot_product_attention(
self, visual_query_key_value, text_query_key_value, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type,
return_attn_probs=False
):
if self.attention_type == 'flash':
visual_shape, text_len = visual_query_key_value.shape[:3], text_cu_seqlens[1]
visual_query_key_value, visual_cu_seqlens = to_1dimension(
visual_query_key_value, visual_cu_seqlens, visual_shape, num_groups, attention_type
)
text_query_key_value = text_query_key_value.unsqueeze(0).expand(math.prod(num_groups), *text_query_key_value.size())
query_key_value = cat_interleave(visual_query_key_value, text_query_key_value, visual_cu_seqlens, text_cu_seqlens)
cu_seqlens = visual_cu_seqlens + text_cu_seqlens
max_seqlen = torch.diff(cu_seqlens).max()
query_key_value = query_key_value.flatten(0, 1)
large_cu_seqlens = torch.cat([cu_seqlens + i * cu_seqlens[-1] for i in range(math.prod(num_groups))])
out, softmax_lse, _ = flash_attn_varlen_qkvpacked_func(query_key_value, large_cu_seqlens, max_seqlen, return_attn_probs=True)
out = out.reshape(math.prod(num_groups), -1, *out.shape[1:]).flatten(-2, -1)
visual_out, text_out = split_interleave(out, cu_seqlens, text_len)
visual_out = to_3dimension(visual_out, visual_shape, num_groups, attention_type)
if return_attn_probs:
return (visual_out, text_out), softmax_lse, None
return visual_out, text_out
def forward(self, visual_embed, text_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type):
visual_shape = visual_embed.shape[:-1]
visual_query, visual_key, visual_value = self.to_query(visual_embed), self.to_key(visual_embed), self.to_value(visual_embed)
visual_query = self.query_norm(visual_query.reshape(*visual_shape, self.num_heads, -1)).type_as(visual_query)
visual_key = self.key_norm(visual_key.reshape(*visual_shape, self.num_heads, -1)).type_as(visual_key)
visual_value = visual_value.reshape(*visual_shape, self.num_heads, -1)
visual_query = apply_rotary(visual_query, rope).type_as(visual_query)
visual_key = apply_rotary(visual_key, rope).type_as(visual_key)
visual_query_key_value = torch.stack([visual_query, visual_key, visual_value], dim=3)
text_len = text_embed.shape[0]
text_query, text_key, text_value = self.to_query(text_embed), self.to_key(text_embed), self.to_value(text_embed)
text_query = self.query_norm(text_query.reshape(text_len, self.num_heads, -1)).type_as(text_query)
text_key = self.key_norm(text_key.reshape(text_len, self.num_heads, -1)).type_as(text_key)
text_value = text_value.reshape(text_len, self.num_heads, -1)
text_query_key_value = torch.stack([text_query, text_key, text_value], dim=1)
visual_out, text_out = self.scaled_dot_product_attention(
visual_query_key_value, text_query_key_value, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type
)
visual_out = self.output_layer(visual_out)
text_out = self.output_layer(text_out)
return visual_out, text_out
class FeedForward(nn.Module):
def __init__(self, dim, ff_dim):
super().__init__()
self.in_layer = nn.Linear(dim, ff_dim, bias=True)
self.activation = nn.GELU()
self.out_layer = nn.Linear(ff_dim, dim, bias=True)
def forward(self, x):
return self.out_layer(self.activation(self.in_layer(x)))
class OutLayer(nn.Module):
def __init__(self, model_dim, time_dim, visual_dim, patch_size):
super().__init__()
self.patch_size = patch_size
self.norm = nn.LayerNorm(model_dim, elementwise_affine=True)
self.out_layer = nn.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True)
self.modulation_activation = nn.SiLU()
self.modulation_out = nn.Linear(time_dim, 2 * model_dim, bias=True)
self.modulation_out.weight.data.zero_()
self.modulation_out.bias.data.zero_()
def forward(self, visual_embed, text_embed, time_embed, visual_cu_seqlens):
modulation_params = self.modulation_out(self.modulation_activation(time_embed))
modulation_params = modulation_params.repeat_interleave(torch.diff(visual_cu_seqlens), dim=0)
shift, scale = torch.chunk(modulation_params, 2, dim=-1)
visual_embed = self.norm(visual_embed) * (scale[:, None, None, :] + 1) + shift[:, None, None, :]
x = self.out_layer(visual_embed)
duration, height, width, dim = x.shape
x = x.view(
duration, height, width,
-1, self.patch_size[0], self.patch_size[1], self.patch_size[2]
).permute(0, 4, 1, 5, 2, 6, 3).flatten(0, 1).flatten(1, 2).flatten(2, 3)
return x
|